File size: 2,068 Bytes
39dff4c
 
 
99914ec
4a0366f
39dff4c
c6ddc86
4a0366f
 
 
 
c6ddc86
39dff4c
 
c6ddc86
 
39dff4c
 
c6ddc86
 
 
 
 
39dff4c
 
c6ddc86
39dff4c
af86876
c6ddc86
4a0366f
 
c6ddc86
4a0366f
 
 
 
 
 
 
af86876
 
 
 
 
 
 
 
 
c6ddc86
4a0366f
c6ddc86
39dff4c
7afe812
c6ddc86
39dff4c
c6ddc86
 
 
 
 
7afe812
 
af86876
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
import requests
import json
from decouple import Config

# Function to interact with Vectara API
def query_vectara(question, chat_history, uploaded_file):
    # Handle file upload to Vectara
    customer_id = config('CUSTOMER_ID')  # Read from .env file
    corpus_id = config('CORPUS_ID')  # Read from .env file
    api_key = config('API_KEY')  # Read from .env file
    url = f"https://api.vectara.io/v1/upload?c={customer_id}&o={corpus_id}"

    post_headers = {
        "x-api-key": api_key,
        "customer-id": customer_id
    }

    files = {
        "file": (uploaded_file.name, uploaded_file),
        "doc_metadata": (None, json.dumps({"metadata_key": "metadata_value"})),  # Replace with your metadata
    }
    response = requests.post(url, files=files, verify=True, headers=post_headers)

    if response.status_code == 200:
        upload_status = "File uploaded successfully"
    else:
        upload_status = "Failed to upload the file"

    # Get the user's message from the chat history
    user_message = chat_history[-1][0]

    query_body = {
        "query": [
            {
                "query": user_message,  # Use the user's message as the query
                "start": 0,
                "numResults": 10,
                "corpusKey": [
                    {
                        "customerId": customer_id,
                        "corpusId": corpus_id,
                        "lexicalInterpolationConfig": {"lambda": 0.025}
                    }
                ]
            }
        ]
    }

    api_endpoint = "https://api.vectara.io/v1/query"
    return f"{upload_status}\n\nResponse from Vectara API: {response.text}"

# Create a Gradio ChatInterface
iface = gr.Interface(
    fn=query_vectara,
    inputs=[
        gr.inputs.Text(label="Ask a question:"),
        gr.inputs.File(label="Upload a file")
    ],
    outputs=gr.outputs.Textbox(),
    examples=["Hello", "What is the weather today?", "Tell me a joke"],
    title="Vectara Chatbot",
    description="Ask me anything using the Vectara API!"
)