File size: 22,371 Bytes
7d88a24
be980dd
722ecec
579282f
fd10b6c
 
39dff4c
5f79091
39dff4c
 
28b69ba
be980dd
adc6d8b
d22abe6
3eb706b
ad65b09
 
 
 
f6b7e7f
eae970b
 
 
 
ecc69e5
eae970b
 
 
 
ad65b09
0f4cece
 
7dc22ca
56811e2
a31fde9
fa57d02
7dc22ca
a31fde9
 
 
 
 
 
 
abe552f
a31fde9
 
f86940b
215f2d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
874e011
215f2d8
874e011
215f2d8
 
7bd7744
11abe35
7dc22ca
 
 
c540f1a
 
c1f218b
 
74f3ed7
be980dd
 
 
c1f218b
be980dd
219ee2d
712a316
be980dd
 
52bb2a3
be980dd
 
 
 
 
ad65b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be980dd
ad65b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
722ecec
ad65b09
 
b67fe1a
ff4e34f
ad65b09
415223e
 
 
 
749f0e0
 
 
 
 
 
 
 
 
ec73dbb
 
 
 
 
 
 
 
 
 
 
415223e
 
 
 
 
 
 
 
 
 
 
 
ff4e34f
415223e
ec73dbb
415223e
adc6d8b
415223e
ff4e34f
 
 
 
c6ddc86
3661992
28b69ba
 
 
4854a72
176b9ce
 
 
 
 
 
 
 
4854a72
 
 
176b9ce
d354d71
d1b23d4
176b9ce
 
 
 
 
 
 
 
 
 
 
d50b1d6
176b9ce
 
 
4854a72
176b9ce
 
 
 
 
 
 
 
 
 
 
 
d354d71
32cbfb2
176b9ce
4854a72
 
 
 
bb31795
 
176b9ce
4854a72
 
176b9ce
4854a72
176b9ce
4854a72
f2e5be8
722ecec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc7c93
722ecec
 
 
 
 
 
 
 
 
 
 
 
 
eae970b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23e856e
 
eae970b
23e856e
eae970b
 
 
 
41cbd00
8586313
2075768
 
 
 
8586313
848d882
2f101a3
848d882
2f101a3
 
 
415223e
2f101a3
 
 
 
41cbd00
2f101a3
 
 
 
415223e
41cbd00
2f101a3
415223e
 
 
 
2f101a3
b510b99
2f101a3
41cbd00
b510b99
 
ff4e34f
b510b99
3c3d6da
 
 
 
b510b99
eae970b
41cbd00
8eb3297
215f2d8
 
41cbd00
b510b99
215f2d8
c03a440
 
 
 
215f2d8
41cbd00
e8d566d
 
a1b9406
eae970b
a1b9406
e8d566d
a1b9406
 
 
eae970b
 
 
a1b9406
eae970b
e8d566d
 
6dbdc81
4f201ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b32ad38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075768
b32ad38
 
9db4018
b32ad38
2075768
9db4018
 
 
 
2075768
9db4018
 
 
 
2075768
9db4018
 
 
 
 
4725fd5
2075768
9db4018
 
 
 
2075768
9db4018
 
b32ad38
2075768
b32ad38
9db4018
 
2075768
 
 
 
9db4018
b32ad38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
# Welcome to Team Tonic's MultiMed

from gradio_client import Client
import os
import numpy as np
import base64
import gradio as gr
import tempfile
import requests
import json
import dotenv
from scipy.io.wavfile import write
import PIL
from openai import OpenAI
import time
from PIL import Image
import io
import hashlib
import datetime
from utils import build_logger
from transformers import AutoTokenizer, MistralForCausalLM
import torch
import random
from textwrap import wrap
import transformers
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import os

# Global variables to hold component references
components = {}
dotenv.load_dotenv()
seamless_client = Client("facebook/seamless_m4t")
HuggingFace_Token = os.getenv("HuggingFace_Token")
hf_token = os.getenv("HuggingFace_Token")

def check_hallucination(assertion,citation):
    API_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
    headers = {"Authorization": f"Bearer {HuggingFace_Token}"}
    payload = {"inputs" : f"{assertion} [SEP] {citation}"}

    response = requests.post(API_URL, headers=headers, json=payload,timeout=120)
    output = response.json()
    output = output[0][0]["score"]

    return f"**hullicination score:** {output}"

# Define the API parameters
VAPI_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"

headers = {"Authorization": f"Bearer {HuggingFace_Token}"}

# Function to query the API
def query(payload):
    response = requests.post(VAPI_URL, headers=headers, json=payload)
    return response.json()

# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
    # Combine the inputs
    combined_input = f"{input1}. {input2}"
    
    # Make the API call
    output = query({"inputs": combined_input})
    
    # Extract the score from the output
    score = output[0][0]['score']
    
    # Generate a label based on the score
    if score < 0.5:
        label = f"🔴 High risk. Score: {score:.2f}"
    else:
        label = f"🟢 Low risk. Score: {score:.2f}"
    
    return label

def process_speech(input_language, audio_input):
    """
    processing sound using seamless_m4t
    """
    if audio_input is None :
        return "no audio or audio did not save yet \nplease try again ! "
    print(f"audio : {audio_input}")
    print(f"audio type : {type(audio_input)}")
    out = seamless_client.predict(
        "S2TT",
        "file",
        None,
        audio_input, #audio_name
        "",
        input_language,# source language
        "English",# target language
        api_name="/run",
    )
    out = out[1] # get the text
    try :
        return f"{out}"
    except Exception as e :
        return f"{e}"

def decode_image(encoded_image: str) -> Image:
    decoded_bytes = base64.b64decode(encoded_image.encode("utf-8"))
    buffer = io.BytesIO(decoded_bytes)
    image = Image.open(buffer)
    return image


def encode_image(image: Image.Image, format: str = "PNG") -> str:
    with io.BytesIO() as buffer:
        image.save(buffer, format=format)
        encoded_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
    return encoded_image


def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    return name


def get_conv_image_dir():
    name = os.path.join(LOGDIR, "images")
    os.makedirs(name, exist_ok=True)
    return name


def get_image_name(image, image_dir=None):
    buffer = io.BytesIO()
    image.save(buffer, format="PNG")
    image_bytes = buffer.getvalue()
    md5 = hashlib.md5(image_bytes).hexdigest()

    if image_dir is not None:
        image_name = os.path.join(image_dir, md5 + ".png")
    else:
        image_name = md5 + ".png"

    return image_name

def resize_image(image, max_size):
    width, height = image.size
    aspect_ratio = float(width) / float(height)

    if width > height:
        new_width = max_size
        new_height = int(new_width / aspect_ratio)
    else:
        new_height = max_size
        new_width = int(new_height * aspect_ratio)

    resized_image = image.resize((new_width, new_height))
    return resized_image



def process_image(image_input):
    # Initialize the Gradio client with the URL of the Gradio server
    client = Client("https://adept-fuyu-8b-demo.hf.space/--replicas/pqjvl/")

    # Check if the image input is a NumPy array
    if isinstance(image_input, np.ndarray):
        # Convert the NumPy array to a PIL Image
        image = Image.fromarray(image_input)
        # Save the PIL Image to a temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
            image.save(tmp_file.name)
            image_path = tmp_file.name
    elif isinstance(image_input, str):
        try:
            # Try to decode if it's a base64 string
            image = decode_image(image_input)
        except Exception:
            # If decoding fails, assume it's a file path or a URL
            image_path = image_input
        else:
            # If decoding succeeds, save the decoded image to a temporary file
            with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
                image.save(tmp_file.name)
                image_path = tmp_file.name
    else:
        # Assuming it's a PIL Image, save it to a temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
            image_input.save(tmp_file.name)
            image_path = tmp_file.name

    # Call the predict method of the client
    result = client.predict(
        image_path,  # File path or URL of the image
        True,        # Additional parameter for the server (e.g., enable detailed captioning)
        fn_index=2   # Function index if the server has multiple functions
    )

    # Clean up the temporary file if created
    if not isinstance(image_input, str) or isinstance(image_input, str) and 'tmp' in image_path:
        os.remove(image_path)

    return result


def query_vectara(text):
    user_message = text

    # Read authentication parameters from the .env file
    CUSTOMER_ID = os.getenv('CUSTOMER_ID')
    CORPUS_ID = os.getenv('CORPUS_ID')
    API_KEY = os.getenv('API_KEY')

    # Define the headers
    api_key_header = {
        "customer-id": CUSTOMER_ID,
        "x-api-key": API_KEY
    }

    # Define the request body in the structure provided in the example
    request_body = {
        "query": [
            {
                "query": user_message,
                "queryContext": "",
                "start": 1,
                "numResults": 25,
                "contextConfig": {
                    "charsBefore": 0,
                    "charsAfter": 0,
                    "sentencesBefore": 2,
                    "sentencesAfter": 2,
                    "startTag": "%START_SNIPPET%",
                    "endTag": "%END_SNIPPET%",
                },
                "rerankingConfig": {
                    "rerankerId": 272725718,
                    "mmrConfig": {
                        "diversityBias": 0.35
                    }
                },
                "corpusKey": [
                    {
                        "customerId": CUSTOMER_ID,
                        "corpusId": CORPUS_ID,
                        "semantics": 0,
                        "metadataFilter": "",
                        "lexicalInterpolationConfig": {
                            "lambda": 0
                        },
                        "dim": []
                    }
                ],
                "summary": [
                    {
                        "maxSummarizedResults": 5,
                        "responseLang": "auto",
                        "summarizerPromptName": "vectara-summary-ext-v1.2.0"
                    }
                ]
            }
        ]
    }

    # Make the API request using Gradio
    response = requests.post(
        "https://api.vectara.io/v1/query",
        json=request_body,  # Use json to automatically serialize the request body
        verify=True,
        headers=api_key_header
    )

    if response.status_code == 200:
        query_data = response.json()
        if query_data:
            sources_info = []

            # Extract the summary.
            summary = query_data['responseSet'][0]['summary'][0]['text']

            # Iterate over all response sets
            for response_set in query_data.get('responseSet', []):
                # Extract sources
                # Limit to top 5 sources.
                for source in response_set.get('response', [])[:5]:
                    source_metadata = source.get('metadata', [])
                    source_info = {}

                    for metadata in source_metadata:
                        metadata_name = metadata.get('name', '')
                        metadata_value = metadata.get('value', '')

                        if metadata_name == 'title':
                            source_info['title'] = metadata_value
                        elif metadata_name == 'author':
                            source_info['author'] = metadata_value
                        elif metadata_name == 'pageNumber':
                            source_info['page number'] = metadata_value

                    if source_info:
                        sources_info.append(source_info)

            result = {"summary": summary, "sources": sources_info}
            return f"{json.dumps(result, indent=2)}"
        else:
            return "No data found in the response."
    else:
        return f"Error: {response.status_code}"


def convert_to_markdown(vectara_response_json):
    vectara_response = json.loads(vectara_response_json)
    if vectara_response:
        summary = vectara_response.get('summary', 'No summary available')
        sources_info = vectara_response.get('sources', [])

        # Format the summary as Markdown
        markdown_summary = f' {summary}\n\n'

        # Format the sources as a numbered list
        markdown_sources = ""
        for i, source_info in enumerate(sources_info):
            author = source_info.get('author', 'Unknown author')
            title = source_info.get('title', 'Unknown title')
            page_number = source_info.get('page number', 'Unknown page number')
            markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n"

        return f"{markdown_summary}**Sources:**\n{markdown_sources}"
    else:
        return "No data found in the response."

# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
    lines = text.split('\n')
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
    wrapped_text = '\n'.join(wrapped_lines)
    return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):

    # Combine user input and system prompt
    formatted_input = f"{user_input}{system_prompt}"

    # Encode the input text
    encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
    model_inputs = encodeds.to(device)

    # Generate a response using the model
    output = model.generate(
        **model_inputs,
        max_length=max_length,
        use_cache=True,
        early_stopping=True,
        bos_token_id=model.config.bos_token_id,
        eos_token_id=model.config.eos_token_id,
        pad_token_id=model.config.eos_token_id,
        temperature=0.1,
        do_sample=True
    )

    # Decode the response
    response_text = tokenizer.decode(output[0], skip_special_tokens=True)

    return response_text

# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Use the base model's ID
base_model_id = "stabilityai/stablelm-3b-4e1t"
model_directory = "Tonic/stablemed"

# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'

# Load the PEFT model
peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)


class ChatBot:
    def __init__(self):
        self.history = []

    def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
        formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
        user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
        response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
        response_text = tokenizer.decode(response[0], skip_special_tokens=True)
        return response_text

bot = ChatBot()

def process_summary_with_stablemed(summary):
    system_prompt = "You are a medical instructor . Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description."
    response_text = bot.predict(summary, system_prompt)
    return response_text

# Main function to handle the Gradio interface logic

def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
    components['speech_to_text'].hide()
    components['image_identification'].hide()
    components['text_summarization'].hide()
    components['results'].show()
    try:
        # Initialize the conditional variables
        combined_text = ""
        image_description = "" 

        # Process text input
        if text_input is not None:
            combined_text = "The user asks the following to his health adviser: " + text_input

        # Process audio input
        if audio_input is not None:
            audio_text = process_speech(input_language, audio_input)
            print("Audio Text:", audio_text)  # Debug print
            combined_text += "\n" + audio_text

        # Process image input
        if image_input is not None:
            image_text = process_image(image_input)  # Call process_image with only the image input
            print("Image Text:", image_text)  # Debug print
            combined_text += "\n" + image_text

        # Check if combined text is empty
        if not combined_text.strip():
            return "Error: Please provide some input (text, audio, or image).", "No hallucination evaluation"
            
        # Use the text to query Vectara
        vectara_response_json = query_vectara(combined_text)
        print("Vectara Response:", vectara_response_json)  # Debug print
        
        # Convert the Vectara response to Markdown
        markdown_output = convert_to_markdown(vectara_response_json)
        
        # Append the original image description to the markdown output
        if image_description:
            markdown_output += "\n\n**Original Image Description:**\n" + image_description
        
        # Process the summary with OpenAI
        final_response = process_summary_with_stablemed(markdown_output)
        print("Final Response:", final_response)  # Debug print

        # Evaluate hallucination
        hallucination_label = evaluate_hallucination(final_response, markdown_output)
        print("Hallucination Label:", hallucination_label)  # Debug print
        
        return final_response, hallucination_label
    except Exception as e:
        # Handle exceptions
        print(f"An error occurred: {e}")
        return "Error occurred during processing.", "No hallucination evaluation"


welcome_message = """
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷

🗣️📝 This is an educational and accessible conversational tool.

### How To Use ⚕🗣️😷MultiMed⚕: 

🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using image, audio or text!

📚🌟💼 that uses [Tonic/stablemed](https://huggingface.co/Tonic/stablemed) and [adept/fuyu-8B](https://huggingface.co/adept/fuyu-8b) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval. 
do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
### Join us : 

🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"             
"""


languages = [
    "Afrikaans",
    "Amharic",
    "Modern Standard Arabic",
    "Moroccan Arabic",
    "Egyptian Arabic",
    "Assamese",
    "Asturian",
    "North Azerbaijani",
    "Belarusian",
    "Bengali",
    "Bosnian",
    "Bulgarian",
    "Catalan",
    "Cebuano",
    "Czech",
    "Central Kurdish",
    "Mandarin Chinese",
    "Welsh",
    "Danish",
    "German",
    "Greek",
    "English",
    "Estonian",
    "Basque",
    "Finnish",
    "French",
    "West Central Oromo",
    "Irish",
    "Galician",
    "Gujarati",
    "Hebrew",
    "Hindi",
    "Croatian",
    "Hungarian",
    "Armenian",
    "Igbo",
    "Indonesian",
    "Icelandic",
    "Italian",
    "Javanese",
    "Japanese",
    "Kamba",
    "Kannada",
    "Georgian",
    "Kazakh",
    "Kabuverdianu",
    "Halh Mongolian",
    "Khmer",
    "Kyrgyz",
    "Korean",
    "Lao",
    "Lithuanian",
    "Luxembourgish",
    "Ganda",
    "Luo",
    "Standard Latvian",
    "Maithili",
    "Malayalam",
    "Marathi",
    "Macedonian",
    "Maltese",
    "Meitei",
    "Burmese",
    "Dutch",
    "Norwegian Nynorsk",
    "Norwegian Bokmål",
    "Nepali",
    "Nyanja",
    "Occitan",
    "Odia",
    "Punjabi",
    "Southern Pashto",
    "Western Persian",
    "Polish",
    "Portuguese",
    "Romanian",
    "Russian",
    "Slovak",
    "Slovenian",
    "Shona",
    "Sindhi",
    "Somali",
    "Spanish",
    "Serbian",
    "Swedish",
    "Swahili",
    "Tamil",
    "Telugu",
    "Tajik",
    "Tagalog",
    "Thai",
    "Turkish",
    "Ukrainian",
    "Urdu",
    "Northern Uzbek",
    "Vietnamese",
    "Xhosa",
    "Yoruba",
    "Cantonese",
    "Colloquial Malay",
    "Standard Malay",
    "Zulu"
]
def process_and_query(input_language, audio_input, image_input, text_input):
    # Your processing logic here
    # Hide input components and show result components after processing
    components['speech_to_text'].hide()
    components['image_identification'].hide()
    components['text_summarization'].hide()
    components['results'].show()
    # Return the processed text and hallucination evaluation
    return "Processed Text in " + input_language, "Hallucination Evaluation"

def clear():
    components['language_selection'].reset()
    components['speech_to_text'].hide()
    components['image_identification'].hide()
    components['text_summarization'].hide()
    components['results'].hide()

def on_language_change(language):
    if language:
        components['speech_to_text'].show()
        components['image_identification'].show()
        components['text_summarization'].show()
    else:
        components['speech_to_text'].hide()
        components['image_identification'].hide()
        components['text_summarization'].hide()


with gr.Blocks(theme='ParityError/Anime') as iface:
    with gr.Row() as language_selection:
        input_language = gr.Dropdown(languages, label="Select the language", value="English", interactive=True, change=lambda x: on_language_change(x))
        components['language_selection'] = language_selection

    with gr.Accordion("Speech to Text", open=False) as speech_to_text:
        audio_input = gr.Audio(label="Speak", type="filepath", sources="microphone")
        audio_output = gr.Markdown(label="Output text")
        components['speech_to_text'] = speech_to_text

    with gr.Accordion("Image Identification", open=False) as image_identification:
        image_input = gr.Image(label="Upload image")
        image_output = gr.Markdown(label="Output text")
        components['image_identification'] = image_identification

    with gr.Accordion("Text Summarization", open=False) as text_summarization:
        text_input = gr.Textbox(label="Input text", lines=5)
        text_output = gr.Markdown(label="Output text")
        text_button = gr.Button("Process text")
        hallucination_output = gr.Label(label="Hallucination Evaluation")
        components['text_summarization'] = text_summarization

    with gr.Row() as results:
        text_output = gr.Markdown()
        hallucination_output = gr.Label()
        components['results'] = results

    clear_button = gr.Button("Clear")
    clear_button.click(clear, inputs=[], outputs=[])

    text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, hallucination_output])

# Initially hide all blocks except language selection
components['speech_to_text'].hide()
components['image_identification'].hide()
components['text_summarization'].hide()
components['results'].hide()

iface.launch(show_error=True, debug=True)