MultiMed / app.py
Tonic's picture
Update app.py
4ec9fa2
raw
history blame
22 kB
# Welcome to Team Tonic's MultiMed
from gradio_client import Client
import numpy as np
import base64
import gradio as gr
import tempfile
import requests
import json
import dotenv
from scipy.io.wavfile import write
import soundfile as sf
from openai import OpenAI
import time
import PIL
from PIL import Image
import io
import hashlib
import datetime
from utils import build_logger
from transformers import AutoTokenizer, MistralForCausalLM
import torch
import random
from textwrap import wrap
import transformers
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import os
import uuid
# Global variables to hold component references
components = {}
dotenv.load_dotenv()
seamless_client = Client("facebook/seamless_m4t")
HuggingFace_Token = os.getenv("HuggingFace_Token")
hf_token = os.getenv("HuggingFace_Token")
base_model_id = os.getenv('BASE_MODEL_ID', 'default_base_model_id')
model_directory = os.getenv('MODEL_DIRECTORY', 'default_model_directory')
device = "cuda" if torch.cuda.is_available() else "cpu"
def check_hallucination(assertion,citation):
API_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
headers = {"Authorization": f"Bearer {HuggingFace_Token}"}
payload = {"inputs" : f"{assertion} [SEP] {citation}"}
response = requests.post(API_URL, headers=headers, json=payload,timeout=120)
output = response.json()
output = output[0][0]["score"]
return f"**hallucination score:** {output}"
# Define the API parameters
VAPI_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
headers = {"Authorization": f"Bearer {HuggingFace_Token}"}
# Function to query the API
def query(payload):
response = requests.post(VAPI_URL, headers=headers, json=payload)
return response.json()
# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
# Combine the inputs
combined_input = f"{input1}. {input2}"
# Make the API call
output = query({"inputs": combined_input})
# Extract the score from the output
score = output[0][0]['score']
# Generate a label based on the score
if score < 0.5:
label = f"🔴 High risk. Score: {score:.2f}"
else:
label = f"🟢 Low risk. Score: {score:.2f}"
return label
def save_audio(audio_input, output_dir="saved_audio"):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Extract sample rate and audio data
sample_rate, audio_data = audio_input
# Generate a unique file name
file_name = f"audio_{int(time.time())}.wav"
file_path = os.path.join(output_dir, file_name)
# Save the audio file
sf.write(file_path, audio_data, sample_rate)
return file_path
def process_speech(input_language, audio_input):
"""
processing sound using seamless_m4t
"""
if audio_input is None :
return "no audio or audio did not save yet \nplease try again ! "
print(f"audio : {audio_input}")
print(f"audio type : {type(audio_input)}")
out = seamless_client.predict(
"S2TT",
"file",
None,
audio_input, #audio_name
"",
input_language,# source language
"English",# target language
api_name="/run",
)
out = out[1] # get the text
try :
return f"{out}"
except Exception as e :
return f"{e}"
def convert_text_to_speech(input_text, source_language, target_language):
"""
Convert text to speech in the specified language and return the new audio file path.
"""
client = Client("https://facebook-seamless-m4t.hf.space/--replicas/8cllp/")
try:
result = client.predict(
"T2ST (Text to Speech translation)", # Task
"text", # Input type
input_text, # Input text
"", # Empty string for audio name
source_language, # Source language
target_language, # Target language
api_name="/run" # API name
)
# Assuming the audio file path is returned in the result
original_audio_file = result[1] if len(result) > 1 else None
if original_audio_file:
# Generate a new file name with a random UUID
new_file_name = f"audio_output_{uuid.uuid4()}.wav"
new_file_path = os.path.join(os.path.dirname(original_audio_file), new_file_name)
# Rename the file
os.rename(original_audio_file, new_file_path)
return new_file_path
else:
return "No audio file generated."
except Exception as e:
# Return a concise error message
return f"Error in text-to-speech conversion: {str(e)}"
def save_image(image_input, output_dir="saved_images"):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Generate a unique file name
file_name = f"image_{int(time.time())}.png"
file_path = os.path.join(output_dir, file_name)
# Check the type of image_input and handle accordingly
if isinstance(image_input, np.ndarray): # If image_input is a NumPy array
Image.fromarray(image_input).save(file_path)
elif isinstance(image_input, Image.Image): # If image_input is a PIL image
image_input.save(file_path)
elif isinstance(image_input, str) and image_input.startswith('data:image'): # If image_input is a base64 string
image_data = base64.b64decode(image_input.split(',')[1])
with open(file_path, 'wb') as f:
f.write(image_data)
else:
raise ValueError("Unsupported image format")
return file_path
def process_image(image_input):
# Initialize the Gradio client with the URL of the Gradio server
client = Client("https://adept-fuyu-8b-demo.hf.space/--replicas/pqjvl/")
# Assuming image_input is a URL path to the image
image_path = image_input
# Call the predict method of the client
result = client.predict(
image_path, # URL of the image
True, # Additional parameter for the server (e.g., enable detailed captioning)
fn_index=2
)
return result
def query_vectara(text):
user_message = text
# Read authentication parameters from the .env file
CUSTOMER_ID = os.getenv('CUSTOMER_ID')
CORPUS_ID = os.getenv('CORPUS_ID')
API_KEY = os.getenv('API_KEY')
# Define the headers
api_key_header = {
"customer-id": CUSTOMER_ID,
"x-api-key": API_KEY
}
# Define the request body in the structure provided in the example
request_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 1,
"numResults": 25,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.35
}
},
"corpusKey": [
{
"customerId": CUSTOMER_ID,
"corpusId": CORPUS_ID,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "auto",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
# Make the API request using Gradio
response = requests.post(
"https://api.vectara.io/v1/query",
json=request_body, # Use json to automatically serialize the request body
verify=True,
headers=api_key_header
)
if response.status_code == 200:
query_data = response.json()
if query_data:
sources_info = []
# Extract the summary.
summary = query_data['responseSet'][0]['summary'][0]['text']
# Iterate over all response sets
for response_set in query_data.get('responseSet', []):
# Extract sources
# Limit to top 5 sources.
for source in response_set.get('response', [])[:5]:
source_metadata = source.get('metadata', [])
source_info = {}
for metadata in source_metadata:
metadata_name = metadata.get('name', '')
metadata_value = metadata.get('value', '')
if metadata_name == 'title':
source_info['title'] = metadata_value
elif metadata_name == 'author':
source_info['author'] = metadata_value
elif metadata_name == 'pageNumber':
source_info['page number'] = metadata_value
if source_info:
sources_info.append(source_info)
result = {"summary": summary, "sources": sources_info}
return f"{json.dumps(result, indent=2)}"
else:
return "No data found in the response."
else:
return f"Error: {response.status_code}"
# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
# Combine user input and system prompt
formatted_input = f"{user_input}{system_prompt}"
# Encode the input text
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
# Generate a response using the model
output = model.generate(
**model_inputs,
max_length=max_length,
use_cache=True,
early_stopping=True,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
temperature=0.1,
do_sample=True
)
# Decode the response
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Load the PEFT model
peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)
class ChatBot:
def __init__(self):
self.history = []
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
formatted_input = f"{system_prompt}{user_input}"
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text
bot = ChatBot()
def process_summary_with_stablemed(summary):
system_prompt = "You are a medical instructor . Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description."
response_text = bot.predict(summary, system_prompt)
return response_text
# Main function to handle the Gradio interface logic
def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
try:
combined_text = ""
image_description = ""
markdown_output = ""
image_text = ""
translated_text = ""
audio_file_path = ""
# Debugging print statement
print(f"Image Input Type: {type(image_input)}, Audio Input Type: {type(audio_input)}")
# Process image input
if image_input is not None:
# Convert image_input to a file path
image_file_path = save_image(image_input)
image_text = process_image(image_file_path)
combined_text += "\n\n**Image Input:**\n" + image_text
# Process audio input
elif audio_input is not None:
audio_file_path = save_audio(audio_input)
audio_text = process_speech(input_language, audio_file_path)
combined_text += "\n\n**Audio Input:**\n" + audio_text
# Process text input
elif text_input is not None and text_input.strip():
combined_text += "The user asks the following to his health adviser: " + text_input
# Check if combined text is empty
else:
return "Error: Please provide some input (text, audio, or image)."
# Append the original image description in Markdown
if image_text:
markdown_output += "\n### Original Image Description\n"
markdown_output += image_text + "\n"
# Use the text to query Vectara
vectara_response_json = query_vectara(combined_text)
# Parse the Vectara response
vectara_response = json.loads(vectara_response_json)
summary = vectara_response.get('summary', 'No summary available')
sources_info = vectara_response.get('sources', [])
# Format Vectara response in Markdown
markdown_output = "### Vectara Response Summary\n"
markdown_output += f"* **Summary**: {summary}\n"
markdown_output += "### Sources Information\n"
for source in sources_info:
markdown_output += f"* {source}\n"
# Process the summary with Stablemed
final_response = process_summary_with_stablemed(summary)
# Convert translated text to speech and get both audio file and text
target_language = "English" # Set the target language for the speech
audio_file_path, translated_text = convert_text_to_speech(final_response, target_language, input_language)
# Evaluate hallucination
hallucination_label = evaluate_hallucination(final_response, summary)
# Add final response and hallucination label to Markdown output
markdown_output += "\n### Processed Summary with StableMed\n"
markdown_output += final_response + "\n"
markdown_output += "\n### Hallucination Evaluation\n"
markdown_output += f"* **Label**: {hallucination_label}\n"
markdown_output += "\n### Translated Text\n"
markdown_output += translated_text + "\n"
return markdown_output, audio_output
except Exception as e:
return f"Error occurred during processing: {e}. No hallucination evaluation.", None
welcome_message = """
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷
🗣️📝 This is an educational and accessible conversational tool.
### How To Use ⚕🗣️😷MultiMed⚕:
🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using image, audio or text!
📚🌟💼 that uses [Tonic/stablemed](https://huggingface.co/Tonic/stablemed) and [adept/fuyu-8B](https://huggingface.co/adept/fuyu-8b) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval.
do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
### Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
"""
languages = [
"Afrikaans",
"Amharic",
"Modern Standard Arabic",
"Moroccan Arabic",
"Egyptian Arabic",
"Assamese",
"Asturian",
"North Azerbaijani",
"Belarusian",
"Bengali",
"Bosnian",
"Bulgarian",
"Catalan",
"Cebuano",
"Czech",
"Central Kurdish",
"Mandarin Chinese",
"Welsh",
"Danish",
"German",
"Greek",
"English",
"Estonian",
"Basque",
"Finnish",
"French",
"West Central Oromo",
"Irish",
"Galician",
"Gujarati",
"Hebrew",
"Hindi",
"Croatian",
"Hungarian",
"Armenian",
"Igbo",
"Indonesian",
"Icelandic",
"Italian",
"Javanese",
"Japanese",
"Kamba",
"Kannada",
"Georgian",
"Kazakh",
"Kabuverdianu",
"Halh Mongolian",
"Khmer",
"Kyrgyz",
"Korean",
"Lao",
"Lithuanian",
"Luxembourgish",
"Ganda",
"Luo",
"Standard Latvian",
"Maithili",
"Malayalam",
"Marathi",
"Macedonian",
"Maltese",
"Meitei",
"Burmese",
"Dutch",
"Norwegian Nynorsk",
"Norwegian Bokmål",
"Nepali",
"Nyanja",
"Occitan",
"Odia",
"Punjabi",
"Southern Pashto",
"Western Persian",
"Polish",
"Portuguese",
"Romanian",
"Russian",
"Slovak",
"Slovenian",
"Shona",
"Sindhi",
"Somali",
"Spanish",
"Serbian",
"Swedish",
"Swahili",
"Tamil",
"Telugu",
"Tajik",
"Tagalog",
"Thai",
"Turkish",
"Ukrainian",
"Urdu",
"Northern Uzbek",
"Vietnamese",
"Xhosa",
"Yoruba",
"Cantonese",
"Colloquial Malay",
"Standard Malay",
"Zulu"
]
def clear():
# Return default values for each component
return "English", None, None, "", None
def create_interface():
with gr.Blocks(theme='ParityError/Anime') as iface:
# Display the welcome message
gr.Markdown(welcome_message)
# Add a 'None' or similar option to represent no selection
input_language_options = ["None"] + languages
input_language = gr.Dropdown(input_language_options, label="Select the language", value="English", interactive=True)
with gr.Accordion("Use Voice", open=False) as voice_accordion:
audio_input = gr.Audio(label="Speak")
audio_output = gr.Markdown(label="Output text") # Markdown component for audio
gr.Examples([["audio1.wav"],["audio2.wav"],],inputs=[audio_input])
with gr.Accordion("Use a Picture", open=False) as picture_accordion:
image_input = gr.Image(label="Upload image")
image_output = gr.Markdown(label="Output text") # Markdown component for image
gr.Examples([["image1.png"], ["image2.jpeg"], ["image3.jpeg"],],inputs=[image_input])
with gr.Accordion("MultiMed", open=False) as multimend_accordion:
text_input = gr.Textbox(label="Use Text", lines=3, placeholder="I have had a sore throat and phlegm for a few days and now my cough has gotten worse!")
gr.Examples([
["What is the proper treatment for buccal herpes?"],
["I have had a sore throat and hoarse voice for serveral days and now a strong cough recently "],
["How does cellular metabolism work TCA cycle"],
["What special care must be provided to children with chicken pox?"],
["When and how often should I wash my hands?"],
["بکل ہرپس کا صحیح علاج کیا ہے؟"],
["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
],inputs=[text_input])
text_output = gr.Markdown(label="MultiMed")
audio_output = gr.Audio(label="Audio Out", type="filepath")
text_button = gr.Button("Use MultiMed")
text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, audio_output])
clear_button = gr.Button("Clear")
clear_button.click(clear, inputs=[], outputs=[input_language, audio_input, image_input, text_output, audio_output])
return iface
iface = create_interface()
iface.launch(show_error=True, debug=True)