Spaces:
Runtime error
Runtime error
# Welcome to Team Tonic's MultiMed | |
from gradio_client import Client | |
import os | |
import numpy as np | |
import base64 | |
import gradio as gr | |
import requests | |
import json | |
import dotenv | |
from scipy.io.wavfile import write | |
import PIL | |
from openai import OpenAI | |
import time | |
dotenv.load_dotenv() | |
seamless_client = Client("facebook/seamless_m4t") | |
def process_speech(audio_input,input_language,target_language): | |
""" | |
processing sound using seamless_m4t | |
""" | |
time.sleep(2) # wait for the audio to be saved | |
print(f"audio : {audio_input}") | |
print(f"audio type : {type(audio_input)}") | |
try : | |
audio_name = f"{np.random.randint(0, 100)}.wav" | |
sr, data = audio_input | |
write(audio_name, sr, data.astype(np.int16)) | |
audio_input = audio_name | |
except : | |
pass | |
out = seamless_client.predict( | |
"S2TT", | |
"file", | |
None, | |
audio_input, #audio_name | |
"", | |
input_language,# Use selected input language as the source language | |
input_language,# Use selected input language as the target language | |
api_name="/run", | |
) | |
out = out[1] # get the text | |
try : | |
return f"{out}" | |
except Exception as e : | |
return f"{e}" | |
def process_image(image) : | |
img_name = f"{np.random.randint(0, 100)}.jpg" | |
PIL.Image.fromarray(image.astype('uint8'), 'RGB').save(img_name) | |
image = open(img_name, "rb").read() | |
base64_image = base64_image = base64.b64encode(image).decode('utf-8') | |
openai_api_key = os.getenv('OPENAI_API_KEY') | |
# oai_org = os.getenv('OAI_ORG') | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}" | |
} | |
payload = { | |
"model": "gpt-4-vision-preview", | |
"messages": [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": "text": "You are clinical consultant discussion training cases with students at TonicUniversity. Assess and describe the photo in minute detail. Pay attention to anatomy , symptoms and remedies. Propose a course of action based on your assessment. Exclude any other commentary " | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{base64_image}" | |
} | |
} | |
] | |
} | |
], | |
"max_tokens": 1200 | |
} | |
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) | |
try : | |
out = response.json() | |
out = out["choices"][0]["message"]["content"] | |
return out | |
except Exception as e : | |
return f"{e}" | |
def query_vectara(text): | |
user_message = text | |
# Read authentication parameters from the .env file | |
CUSTOMER_ID = os.getenv('CUSTOMER_ID') | |
CORPUS_ID = os.getenv('CORPUS_ID') | |
API_KEY = os.getenv('API_KEY') | |
# Define the headers | |
api_key_header = { | |
"customer-id": CUSTOMER_ID, | |
"x-api-key": API_KEY | |
} | |
# Define the request body in the structure provided in the example | |
request_body = { | |
"query": [ | |
{ | |
"query": user_message, | |
"queryContext": "", | |
"start": 1, | |
"numResults": 50, | |
"contextConfig": { | |
"charsBefore": 0, | |
"charsAfter": 0, | |
"sentencesBefore": 2, | |
"sentencesAfter": 2, | |
"startTag": "%START_SNIPPET%", | |
"endTag": "%END_SNIPPET%", | |
}, | |
"rerankingConfig": { | |
"rerankerId": 272725718, | |
"mmrConfig": { | |
"diversityBias": 0.35 | |
} | |
}, | |
"corpusKey": [ | |
{ | |
"customerId": CUSTOMER_ID, | |
"corpusId": CORPUS_ID, | |
"semantics": 0, | |
"metadataFilter": "", | |
"lexicalInterpolationConfig": { | |
"lambda": 0 | |
}, | |
"dim": [] | |
} | |
], | |
"summary": [ | |
{ | |
"maxSummarizedResults": 5, | |
"responseLang": "auto", | |
"summarizerPromptName": "vectara-summary-ext-v1.2.0" | |
} | |
] | |
} | |
] | |
} | |
# Make the API request using Gradio | |
response = requests.post( | |
"https://api.vectara.io/v1/query", | |
json=request_body, # Use json to automatically serialize the request body | |
verify=True, | |
headers=api_key_header | |
) | |
if response.status_code == 200: | |
query_data = response.json() | |
if query_data: | |
sources_info = [] | |
# Extract the summary. | |
summary = query_data['responseSet'][0]['summary'][0]['text'] | |
# Iterate over all response sets | |
for response_set in query_data.get('responseSet', []): | |
# Extract sources | |
# Limit to top 5 sources. | |
for source in response_set.get('response', [])[:5]: | |
source_metadata = source.get('metadata', []) | |
source_info = {} | |
for metadata in source_metadata: | |
metadata_name = metadata.get('name', '') | |
metadata_value = metadata.get('value', '') | |
if metadata_name == 'title': | |
source_info['title'] = metadata_value | |
elif metadata_name == 'author': | |
source_info['author'] = metadata_value | |
elif metadata_name == 'pageNumber': | |
source_info['page number'] = metadata_value | |
if source_info: | |
sources_info.append(source_info) | |
result = {"summary": summary, "sources": sources_info} | |
return f"{json.dumps(result, indent=2)}" | |
else: | |
return "No data found in the response." | |
else: | |
return f"Error: {response.status_code}" | |
def convert_to_markdown(vectara_response_json): | |
vectara_response = json.loads(vectara_response_json) | |
if vectara_response: | |
summary = vectara_response.get('summary', 'No summary available') | |
sources_info = vectara_response.get('sources', []) | |
# Format the summary as Markdown | |
markdown_summary = f'**Summary:** {summary}\n\n' | |
# Format the sources as a numbered list | |
markdown_sources = "" | |
for i, source_info in enumerate(sources_info): | |
author = source_info.get('author', 'Unknown author') | |
title = source_info.get('title', 'Unknown title') | |
page_number = source_info.get('page number', 'Unknown page number') | |
markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n" | |
return f"{markdown_summary}**Sources:**\n{markdown_sources}" | |
else: | |
return "No data found in the response." | |
# Main function to handle the Gradio interface logic | |
def process_and_query(text=None): | |
try: | |
# augment the prompt before feeding it to vectara | |
text = "the user asks the following to his health adviser " + text | |
# If an image is provided, process it with OpenAI and use the response as the text query for Vectara | |
# if image is not None: | |
# text = process_image(image) | |
# return "**Summary:** "+text | |
# if audio is not None: | |
# text = process_speech(audio) | |
# # augment the prompt before feeding it to vectara | |
# text = "the user asks the following to his health adviser " + text | |
# Now, use the text (either provided by the user or obtained from OpenAI) to query Vectara | |
vectara_response_json = query_vectara(text) | |
markdown_output = convert_to_markdown(vectara_response_json) | |
client = OpenAI() | |
prompt ="Answer in the same language, write it better, more understandable and shorter:" | |
markdown_output_final = markdown_output | |
completion = client.chat.completions.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": prompt}, | |
{"role": "user", "content": markdown_output_final} | |
] | |
) | |
final_response= completion.choices[0].message.content | |
return final_response | |
except Exception as e: | |
return str(e) | |
# Define the Gradio interface | |
# iface = gr.Interface( | |
# fn=process_and_query, | |
# inputs=[ | |
# gr.Textbox(label="Input Text"), | |
# gr.Image(label="Upload Image"), | |
# gr.Audio(label="talk in french", | |
# sources=["microphone"]), | |
# ], | |
# outputs=[gr.Markdown(label="Output Text")], | |
# title="👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷", | |
# description=''' | |
# ### How To Use ⚕🗣️😷MultiMed⚕: | |
# #### 🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using audio or text! | |
# #### 🗣️📝 This is an educational and accessible conversational tool to improve wellness and sanitation in support of public health. | |
# #### 📚🌟💼 The knowledge base is composed of publicly available medical and health sources in multiple languages. We also used [Kelvalya/MedAware](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset) that we processed and converted to HTML. The quality of the answers depends on the quality of the dataset, so if you want to see some data represented here, do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
# #### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" | |
# ''', | |
# theme='ParityError/Anime', | |
# examples=[ | |
# ["What is the proper treatment for buccal herpes?"], | |
# ["Male, 40 presenting with swollen glands and a rash"], | |
# ["How does cellular metabolism work TCA cycle"], | |
# ["What special care must be provided to children with chicken pox?"], | |
# ["When and how often should I wash my hands ?"], | |
# ["بکل ہرپس کا صحیح علاج کیا ہے؟"], | |
# ["구강 헤르페스의 적절한 치료법은 무엇입니까?"], | |
# ["Je, ni matibabu gani sahihi kwa herpes ya buccal?"], | |
# ], | |
# ) | |
welcome_message = """ | |
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷 | |
### How To Use ⚕🗣️😷MultiMed⚕: | |
#### 🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using audio or text! | |
#### 🗣️📝 This is an educational and accessible conversational tool to improve wellness and sanitation in support of public health. | |
#### 📚🌟💼 The knowledge base is composed of publicly available medical and health sources in multiple languages. We also used [Kelvalya/MedAware](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset) that we processed and converted to HTML. The quality of the answers depends on the quality of the dataset, so if you want to see some data represented here, do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
#### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" | |
""" | |
languages = [ | |
"Afrikaans", | |
"Amharic", | |
"Modern Standard Arabic", | |
"Moroccan Arabic", | |
"Egyptian Arabic", | |
"Assamese", | |
"Asturian", | |
"North Azerbaijani", | |
"Belarusian", | |
"Bengali", | |
"Bosnian", | |
"Bulgarian", | |
"Catalan", | |
"Cebuano", | |
"Czech", | |
"Central Kurdish", | |
"Mandarin Chinese", | |
"Welsh", | |
"Danish", | |
"German", | |
"Greek", | |
"English", | |
"Estonian", | |
"Basque", | |
"Finnish", | |
"French", | |
"West Central Oromo", | |
"Irish", | |
"Galician", | |
"Gujarati", | |
"Hebrew", | |
"Hindi", | |
"Croatian", | |
"Hungarian", | |
"Armenian", | |
"Igbo", | |
"Indonesian", | |
"Icelandic", | |
"Italian", | |
"Javanese", | |
"Japanese", | |
"Kamba", | |
"Kannada", | |
"Georgian", | |
"Kazakh", | |
"Kabuverdianu", | |
"Halh Mongolian", | |
"Khmer", | |
"Kyrgyz", | |
"Korean", | |
"Lao", | |
"Lithuanian", | |
"Luxembourgish", | |
"Ganda", | |
"Luo", | |
"Standard Latvian", | |
"Maithili", | |
"Malayalam", | |
"Marathi", | |
"Macedonian", | |
"Maltese", | |
"Meitei", | |
"Burmese", | |
"Dutch", | |
"Norwegian Nynorsk", | |
"Norwegian Bokmål", | |
"Nepali", | |
"Nyanja", | |
"Occitan", | |
"Odia", | |
"Punjabi", | |
"Southern Pashto", | |
"Western Persian", | |
"Polish", | |
"Portuguese", | |
"Romanian", | |
"Russian", | |
"Slovak", | |
"Slovenian", | |
"Shona", | |
"Sindhi", | |
"Somali", | |
"Spanish", | |
"Serbian", | |
"Swedish", | |
"Swahili", | |
"Tamil", | |
"Telugu", | |
"Tajik", | |
"Tagalog", | |
"Thai", | |
"Turkish", | |
"Ukrainian", | |
"Urdu", | |
"Northern Uzbek", | |
"Vietnamese", | |
"Xhosa", | |
"Yoruba", | |
"Cantonese", | |
"Colloquial Malay", | |
"Standard Malay", | |
"Zulu" | |
] | |
with gr.Blocks(theme='ParityError/Anime') as iface : | |
gr.Markdown(welcome_message) | |
with gr.Tab("text summarization"): | |
text_input = gr.Textbox(label="input text",lines=5) | |
text_output = gr.Markdown(label="output text") | |
text_button = gr.Button("process text") | |
with gr.Tab("image identification"): | |
image_input = gr.Image(label="upload image") | |
image_output = gr.Markdown(label="output text") | |
image_button = gr.Button("process image") | |
with gr.Tab("speech to text translation"): | |
with gr.Row(): | |
input_language = gr.Dropdown(languages, label="input language",value="French",interactive=True) | |
target_language = gr.Dropdown(languages, label="target language",value="English",interactive=True) | |
audio_input = gr.Audio(label="speak",type="filepath",sources="microphone") | |
audio_output = gr.Markdown(label="output text") | |
audio_button = gr.Button("process audio") | |
text_button.click(process_and_query, inputs=text_input, outputs=text_output) | |
image_button.click(process_image, inputs=image_input, outputs=image_output) | |
audio_button.click(process_speech, inputs=[audio_input,input_language,target_language], outputs=audio_output) | |
iface.queue().launch(show_error=True,debug=True) | |