MultiMed / app.py
Tonic's picture
Update app.py
e98c8c0
raw
history blame
21.8 kB
# Welcome to Team Tonic's MultiMed
from gradio_client import Client
import numpy as np
import gradio as gr
import requests
import json
import dotenv
import soundfile as sf
import time
import textwrap
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
import torch
import os
import uuid
# Global variables to hold component references
components = {}
dotenv.load_dotenv()
seamless_client = Client("facebook/seamless_m4t")
HuggingFace_Token = os.getenv("HuggingFace_Token")
hf_token = os.getenv("HuggingFace_Token")
base_model_id = os.getenv('BASE_MODEL_ID', 'default_base_model_id')
model_directory = os.getenv('MODEL_DIRECTORY', 'default_model_directory')
device = "cuda" if torch.cuda.is_available() else "cpu"
image_description = ""
# audio_output = ""
global markdown_output
global audio_output
def check_hallucination(assertion, citation):
api_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
header = {"Authorization": f"Bearer {hf_token}"}
payload = {"inputs": f"{assertion} [SEP] {citation}"}
response = requests.post(api_url, headers=header, json=payload, timeout=120)
output = response.json()
output = output[0][0]["score"]
return f"**hallucination score:** {output}"
# Define the API parameters
vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
headers = {"Authorization": f"Bearer {hf_token}"}
# Function to query the API
def query(payload):
response = requests.post(vapi_url, headers=headers, json=payload)
return response.json()
# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
# Combine the inputs
combined_input = f"{input1}. {input2}"
# Make the API call
output = query({"inputs": combined_input})
# Extract the score from the output
score = output[0][0]['score']
# Generate a label based on the score
if score < 0.5:
label = f"🔴 High risk. Score: {score:.2f}"
else:
label = f"🟢 Low risk. Score: {score:.2f}"
return label
def save_audio(audio_input, output_dir="saved_audio"):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Extract sample rate and audio data
sample_rate, audio_data = audio_input
# Generate a unique file name
file_name = f"audio_{int(time.time())}.wav"
file_path = os.path.join(output_dir, file_name)
# Save the audio file
sf.write(file_path, audio_data, sample_rate)
return file_path
def save_image(image_input, output_dir="saved_images"):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Assuming image_input is a NumPy array
if isinstance(image_input, np.ndarray):
# Convert NumPy arrays to PIL Image
image = Image.fromarray(image_input)
# Generate a unique file name
file_name = f"image_{int(time.time())}.png"
file_path = os.path.join(output_dir, file_name)
# Save the image file
image.save(file_path)
return file_path
else:
raise ValueError("Invalid image input type")
def process_speech(input_language, audio_input):
"""
processing sound using seamless_m4t
"""
if audio_input is None:
return "no audio or audio did not save yet \nplease try again ! "
print(f"audio : {audio_input}")
print(f"audio type : {type(audio_input)}")
out = seamless_client.predict(
"S2TT",
"file",
None,
audio_input,
"",
input_language,
"English",
api_name="/run",
)
out = out[1] # get the text
try:
return f"{out}"
except Exception as e:
return f"{e}"
import os
import uuid
def convert_text_to_speech(input_text: str, source_language: str, target_language: str) -> tuple[str, str]:
client = Client("https://facebook-seamless-m4t.hf.space/--replicas/8cllp/")
try:
result = client.predict(
task_name="T2ST",
audio_source="",
input_audio_mic=None,
input_audio_file=None,
input_text=input_text,
source_language=source_language,
target_language=target_language,
api_name="/run",
)
# Initialize variables
translated_text = ""
new_file_path = ""
# Process each item in the result
for item in result:
if isinstance(item, str):
# Check if the item is likely a URL
if item.startswith('http://') or item.startswith('https://'):
continue
# Assign the first non-URL string as the translated text
if not translated_text:
translated_text = item
elif os.path.isdir(item):
# Find the first MP3 file in the directory
for file in os.listdir(item):
file_path = os.path.join(item, file)
if os.path.isfile(file_path) and file_path.endswith('.mp3'):
# Return the path of the MP3 file directly without renaming
new_file_path = file_path
break
if new_file_path:
break
return new_file_path, translated_text
except Exception as e:
return f"Error in text-to-speech conversion: {str(e)}", ""
def process_image(image_input):
# Initialize the Gradio client with the URL of the Gradio server
client = Client("https://adept-fuyu-8b-demo.hf.space/--replicas/pqjvl/")
# Assuming image_input is a URL path to the image
image_path = image_input
# Call the predict method of the client
result = client.predict(
image_path, # URL of the image
True, # Additional parameter for the server (e.g., enable detailed captioning)
fn_index=2
)
return result
def query_vectara(text):
user_message = text
# Read authentication parameters from the .env file
customer_id = os.getenv('CUSTOMER_ID')
corpus_id = os.getenv('CORPUS_ID')
api_key = os.getenv('API_KEY')
# Define the headers
api_key_header = {
"customer-id": customer_id,
"x-api-key": api_key
}
# Define the request body in the structure provided in the example
request_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 1,
"numResults": 25,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.35
}
},
"corpusKey": [
{
"customerId": customer_id,
"corpusId": corpus_id,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "auto",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
# Make the API request using Gradio
response = requests.post(
"https://api.vectara.io/v1/query",
json=request_body, # Use json to automatically serialize the request body
verify=True,
headers=api_key_header
)
if response.status_code == 200:
query_data = response.json()
if query_data:
sources_info = []
# Extract the summary.
summary = query_data['responseSet'][0]['summary'][0]['text']
# Iterate over all response sets
for response_set in query_data.get('responseSet', []):
# Extract sources
# Limit to top 5 sources.
for source in response_set.get('response', [])[:5]:
source_metadata = source.get('metadata', [])
source_info = {}
for metadata in source_metadata:
metadata_name = metadata.get('name', '')
metadata_value = metadata.get('value', '')
if metadata_name == 'title':
source_info['title'] = metadata_value
elif metadata_name == 'author':
source_info['author'] = metadata_value
elif metadata_name == 'pageNumber':
source_info['page number'] = metadata_value
if source_info:
sources_info.append(source_info)
result = {"summary": summary, "sources": sources_info}
return f"{json.dumps(result, indent=2)}"
else:
return "No data found in the response."
else:
return f"Error: {response.status_code}"
# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
# Combine user input and system prompt
formatted_input = f"{user_input}{system_prompt}"
# Encode the input text
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
# Generate a response using the model //MODEL UNDEFINED, using peft_model instead.
output = peft_model.generate(
**model_inputs,
max_length=512,
use_cache=True,
early_stopping=True,
bos_token_id=peft_model.config.bos_token_id,
eos_token_id=peft_model.config.eos_token_id,
pad_token_id=peft_model.config.eos_token_id,
temperature=0.1,
do_sample=True
)
# Decode the response
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Load the PEFT model
peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)
class ChatBot:
def __init__(self):
self.history = []
@staticmethod
def doctor(user_input, system_prompt="You are an expert medical analyst:"):
formatted_input = f"{system_prompt}{user_input}"
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text
bot = ChatBot()
def process_summary_with_stablemed(summary):
system_prompt = "You are a medical instructor . Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description."
response_text = bot.doctor(summary, system_prompt)
return response_text
# Main function to handle the Gradio interface logic
def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
try:
combined_text = ""
markdown_output = ""
image_text = ""
# Debugging print statement
print(f"Image Input Type: {type(image_input)}, Audio Input Type: {type(audio_input)}")
# Process image input
if image_input is not None:
# Convert image_input to a file path
image_file_path = save_image(image_input)
image_text = process_image(image_file_path)
combined_text += "\n\n**Image Input:**\n" + image_text
# Process audio input
elif audio_input is not None:
audio_file_path = save_audio(audio_input)
audio_text = process_speech(input_language, audio_file_path)
combined_text += "\n\n**Audio Input:**\n" + audio_text
# Process text input
elif text_input is not None and text_input.strip():
combined_text += "The user asks the following to his health adviser: " + text_input
# Check if combined text is empty
else:
return "Error: Please provide some input (text, audio, or image)."
# Append the original image description in Markdown
if image_text:
markdown_output += "\n### Original Image Description\n"
markdown_output += image_text + "\n"
# Use the text to query Vectara
vectara_response_json = query_vectara(combined_text)
# Parse the Vectara response
vectara_response = json.loads(vectara_response_json)
summary = vectara_response.get('summary', 'No summary available')
sources_info = vectara_response.get('sources', [])
# Format Vectara response in Markdown
markdown_output = "### Vectara Response Summary\n"
markdown_output += f"* **Summary**: {summary}\n"
markdown_output += "### Sources Information\n"
for source in sources_info:
markdown_output += f"* {source}\n"
# Process the summary with Stablemed
final_response = process_summary_with_stablemed(summary)
# Convert translated text to speech and get both audio file and text
target_language = "English" # Set the target language for the speech
audio_output, translated_text = convert_text_to_speech(final_response, target_language, input_language)
# Evaluate hallucination
hallucination_label = evaluate_hallucination(final_response, summary)
# Add final response and hallucination label to Markdown output
markdown_output += "\n### Processed Summary with StableMed\n"
markdown_output += final_response + "\n"
markdown_output += "\n### Hallucination Evaluation\n"
markdown_output += f"* **Label**: {hallucination_label}\n"
markdown_output += "\n### Translated Text\n"
markdown_output += translated_text + "\n"
return markdown_output, audio_output
except Exception as e:
return f"Error occurred during processing: {e}. No hallucination evaluation.", None
welcome_message = """
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷
🗣️📝 This is an educational and accessible conversational tool.
### How To Use ⚕🗣️😷MultiMed⚕:
🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using image, audio or text!
📚🌟💼 that uses [Tonic/stablemed](https://huggingface.co/Tonic/stablemed) and [adept/fuyu-8B](https://huggingface.co/adept/fuyu-8b) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval.
do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
### Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
"""
languages = [
"Afrikaans",
"Amharic",
"Modern Standard Arabic",
"Moroccan Arabic",
"Egyptian Arabic",
"Assamese",
"Asturian",
"North Azerbaijani",
"Belarusian",
"Bengali",
"Bosnian",
"Bulgarian",
"Catalan",
"Cebuano",
"Czech",
"Central Kurdish",
"Mandarin Chinese",
"Welsh",
"Danish",
"German",
"Greek",
"English",
"Estonian",
"Basque",
"Finnish",
"French",
"West Central Oromo",
"Irish",
"Galician",
"Gujarati",
"Hebrew",
"Hindi",
"Croatian",
"Hungarian",
"Armenian",
"Igbo",
"Indonesian",
"Icelandic",
"Italian",
"Javanese",
"Japanese",
"Kamba",
"Kannada",
"Georgian",
"Kazakh",
"Kabuverdianu",
"Halh Mongolian",
"Khmer",
"Kyrgyz",
"Korean",
"Lao",
"Lithuanian",
"Luxembourgish",
"Ganda",
"Luo",
"Standard Latvian",
"Maithili",
"Malayalam",
"Marathi",
"Macedonian",
"Maltese",
"Meitei",
"Burmese",
"Dutch",
"Norwegian Nynorsk",
"Norwegian Bokmål",
"Nepali",
"Nyanja",
"Occitan",
"Odia",
"Punjabi",
"Southern Pashto",
"Western Persian",
"Polish",
"Portuguese",
"Romanian",
"Russian",
"Slovak",
"Slovenian",
"Shona",
"Sindhi",
"Somali",
"Spanish",
"Serbian",
"Swedish",
"Swahili",
"Tamil",
"Telugu",
"Tajik",
"Tagalog",
"Thai",
"Turkish",
"Ukrainian",
"Urdu",
"Northern Uzbek",
"Vietnamese",
"Xhosa",
"Yoruba",
"Cantonese",
"Colloquial Malay",
"Standard Malay",
"Zulu"
]
def clear():
# Return default values for each component
return "English", None, None, "", None
def create_interface():
# with gr.Blocks(theme='ParityError/Anime') as iface:
with gr.Blocks() as interface:
# Display the welcome message
gr.Markdown(welcome_message)
# Add a 'None' or similar option to represent no selection
input_language_options = ["None"] + languages
input_language = gr.Dropdown(input_language_options, label="Select the language", value="English", interactive=True)
with gr.Accordion("Use Voice", open=False) as voice_accordion:
audio_input = gr.Audio(label="Speak")
audio_output = gr.Markdown(label="Output text") # Markdown component for audio
gr.Examples([["audio1.wav"],["audio2.wav"],],inputs=[audio_input])
with gr.Accordion("Use a Picture", open=False) as picture_accordion:
image_input = gr.Image(label="Upload image")
image_output = gr.Markdown(label="Output text") # Markdown component for image
gr.Examples([["image1.png"], ["image2.jpeg"], ["image3.jpeg"],],inputs=[image_input])
with gr.Accordion("MultiMed", open=False) as multimend_accordion:
text_input = gr.Textbox(label="Use Text", lines=3, placeholder="I have had a sore throat and phlegm for a few days and now my cough has gotten worse!")
gr.Examples([
["What is the proper treatment for buccal herpes?"],
["I have had a sore throat and hoarse voice for several days and now a strong cough recently "],
["How does cellular metabolism work TCA cycle"],
["What special care must be provided to children with chicken pox?"],
["When and how often should I wash my hands?"],
["بکل ہرپس کا صحیح علاج کیا ہے؟"],
["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
],inputs=[text_input])
text_output = gr.Markdown(label="MultiMed")
audio_output = gr.Audio(label="Audio Out", type="filepath")
text_button = gr.Button("Use MultiMed")
text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, audio_output])
clear_button = gr.Button("Clear")
clear_button.click(clear, inputs=[], outputs=[input_language, audio_input, image_input, text_output, audio_output])
return interface
interface = create_interface()
interface.launch(show_error=True, debug=True)