Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -124,7 +124,7 @@ def process_speech(input_language, audio_input):
|
|
124 |
|
125 |
def convert_text_to_speech(input_text, source_language, target_language):
|
126 |
"""
|
127 |
-
Convert text to speech in the specified language and return the
|
128 |
"""
|
129 |
client = Client("https://facebook-seamless-m4t.hf.space/--replicas/8cllp/")
|
130 |
|
@@ -139,46 +139,35 @@ def convert_text_to_speech(input_text, source_language, target_language):
|
|
139 |
api_name="/run" # API name
|
140 |
)
|
141 |
|
142 |
-
#
|
143 |
-
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
-
|
151 |
-
|
|
|
|
|
152 |
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
154 |
else:
|
155 |
-
return "
|
156 |
|
157 |
except Exception as e:
|
158 |
# Return a concise error message
|
159 |
-
return f"Error in text-to-speech conversion: {str(e)}"
|
160 |
-
|
161 |
-
def save_image(image_input, output_dir="saved_images"):
|
162 |
-
if not os.path.exists(output_dir):
|
163 |
-
os.makedirs(output_dir)
|
164 |
|
165 |
-
# Generate a unique file name
|
166 |
-
file_name = f"image_{int(time.time())}.png"
|
167 |
-
file_path = os.path.join(output_dir, file_name)
|
168 |
-
|
169 |
-
# Check the type of image_input and handle accordingly
|
170 |
-
if isinstance(image_input, np.ndarray): # If image_input is a NumPy array
|
171 |
-
Image.fromarray(image_input).save(file_path)
|
172 |
-
elif isinstance(image_input, Image.Image): # If image_input is a PIL image
|
173 |
-
image_input.save(file_path)
|
174 |
-
elif isinstance(image_input, str) and image_input.startswith('data:image'): # If image_input is a base64 string
|
175 |
-
image_data = base64.b64decode(image_input.split(',')[1])
|
176 |
-
with open(file_path, 'wb') as f:
|
177 |
-
f.write(image_data)
|
178 |
-
else:
|
179 |
-
raise ValueError("Unsupported image format")
|
180 |
-
|
181 |
-
return file_path
|
182 |
|
183 |
def process_image(image_input):
|
184 |
# Initialize the Gradio client with the URL of the Gradio server
|
@@ -365,9 +354,9 @@ def process_summary_with_stablemed(summary):
|
|
365 |
response_text = bot.predict(summary, system_prompt)
|
366 |
return response_text
|
367 |
|
|
|
368 |
# Main function to handle the Gradio interface logic
|
369 |
|
370 |
-
|
371 |
def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
|
372 |
try:
|
373 |
|
@@ -414,10 +403,6 @@ def process_and_query(input_language=None, audio_input=None, image_input=None, t
|
|
414 |
summary = vectara_response.get('summary', 'No summary available')
|
415 |
sources_info = vectara_response.get('sources', [])
|
416 |
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
# Format Vectara response in Markdown
|
422 |
markdown_output = "### Vectara Response Summary\n"
|
423 |
markdown_output += f"* **Summary**: {summary}\n"
|
@@ -448,8 +433,6 @@ def process_and_query(input_language=None, audio_input=None, image_input=None, t
|
|
448 |
except Exception as e:
|
449 |
return f"Error occurred during processing: {e}. No hallucination evaluation.", None
|
450 |
|
451 |
-
|
452 |
-
|
453 |
welcome_message = """
|
454 |
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷
|
455 |
|
@@ -572,13 +555,10 @@ languages = [
|
|
572 |
"Zulu"
|
573 |
]
|
574 |
|
575 |
-
|
576 |
def clear():
|
577 |
# Return default values for each component
|
578 |
return "English", None, None, "", None
|
579 |
|
580 |
-
|
581 |
-
|
582 |
def create_interface():
|
583 |
with gr.Blocks(theme='ParityError/Anime') as iface:
|
584 |
# Display the welcome message
|
|
|
124 |
|
125 |
def convert_text_to_speech(input_text, source_language, target_language):
|
126 |
"""
|
127 |
+
Convert text to speech in the specified language and return the audio file path and translated text.
|
128 |
"""
|
129 |
client = Client("https://facebook-seamless-m4t.hf.space/--replicas/8cllp/")
|
130 |
|
|
|
139 |
api_name="/run" # API name
|
140 |
)
|
141 |
|
142 |
+
# Check if result contains files and select the first one
|
143 |
+
if isinstance(result, list) and len(result) > 1:
|
144 |
+
# Select the first audio file from the result
|
145 |
+
original_audio_file = result[1] # Assuming the first element is the audio file
|
146 |
|
147 |
+
# Iterate over the result to find the last text item
|
148 |
+
translated_text = ""
|
149 |
+
for item in result:
|
150 |
+
if isinstance(item, str):
|
151 |
+
translated_text = item
|
152 |
|
153 |
+
if original_audio_file:
|
154 |
+
# Generate a new file name with a random UUID
|
155 |
+
new_file_name = f"audio_output_{uuid.uuid4()}.wav"
|
156 |
+
new_file_path = os.path.join(os.path.dirname(original_audio_file), new_file_name)
|
157 |
|
158 |
+
# Rename the file
|
159 |
+
os.rename(original_audio_file, new_file_path)
|
160 |
+
|
161 |
+
return new_file_path, translated_text
|
162 |
+
else:
|
163 |
+
return "No audio file generated.", translated_text
|
164 |
else:
|
165 |
+
return "Unexpected result format or insufficient data received.", ""
|
166 |
|
167 |
except Exception as e:
|
168 |
# Return a concise error message
|
169 |
+
return f"Error in text-to-speech conversion: {str(e)}", ""
|
|
|
|
|
|
|
|
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
def process_image(image_input):
|
173 |
# Initialize the Gradio client with the URL of the Gradio server
|
|
|
354 |
response_text = bot.predict(summary, system_prompt)
|
355 |
return response_text
|
356 |
|
357 |
+
|
358 |
# Main function to handle the Gradio interface logic
|
359 |
|
|
|
360 |
def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
|
361 |
try:
|
362 |
|
|
|
403 |
summary = vectara_response.get('summary', 'No summary available')
|
404 |
sources_info = vectara_response.get('sources', [])
|
405 |
|
|
|
|
|
|
|
|
|
406 |
# Format Vectara response in Markdown
|
407 |
markdown_output = "### Vectara Response Summary\n"
|
408 |
markdown_output += f"* **Summary**: {summary}\n"
|
|
|
433 |
except Exception as e:
|
434 |
return f"Error occurred during processing: {e}. No hallucination evaluation.", None
|
435 |
|
|
|
|
|
436 |
welcome_message = """
|
437 |
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷
|
438 |
|
|
|
555 |
"Zulu"
|
556 |
]
|
557 |
|
|
|
558 |
def clear():
|
559 |
# Return default values for each component
|
560 |
return "English", None, None, "", None
|
561 |
|
|
|
|
|
562 |
def create_interface():
|
563 |
with gr.Blocks(theme='ParityError/Anime') as iface:
|
564 |
# Display the welcome message
|