Tonic commited on
Commit
f89e4bc
1 Parent(s): 874e011

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -36
app.py CHANGED
@@ -84,50 +84,29 @@ def process_speech(input_language, audio_input):
84
 
85
 
86
 
87
- def process_image(image) :
 
88
  img_name = f"{np.random.randint(0, 100)}.jpg"
89
  PIL.Image.fromarray(image.astype('uint8'), 'RGB').save(img_name)
90
- image = open(img_name, "rb").read()
91
- base64_image = base64_image = base64.b64encode(image).decode('utf-8')
92
- openai_api_key = os.getenv('OPENAI_API_KEY')
93
- # oai_org = os.getenv('OAI_ORG')
94
-
95
- headers = {
96
- "Content-Type": "application/json",
97
- "Authorization": f"Bearer {openai_api_key}"
98
- }
99
 
 
100
  payload = {
101
- "model": "gpt-4-vision-preview",
102
- "messages": [
103
- {
104
- "role": "user",
105
- "content": [
106
- {
107
- "type": "text",
108
- "text": "You are clinical consultant discussion training cases with students at TonicUniversity. Assess and describe the photo in minute detail. Explain why each area or item in the photograph would be inappropriate to describe if required. Pay attention to anatomy, symptoms and remedies. Propose a course of action based on your assessment. Exclude any other commentary:"
109
- },
110
- {
111
- "type": "image_url",
112
- "image_url": {
113
- "url": f"data:image/jpeg;base64,{base64_image}"
114
- }
115
- }
116
- ]
117
- }
118
  ],
119
- "max_tokens": 1200
120
  }
121
 
122
- response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
 
123
 
124
- try :
125
- out = response.json()
126
- out = out["choices"][0]["message"]["content"]
127
-
128
- return out
129
- except Exception as e :
130
- return f"{e}"
131
 
132
 
133
  def query_vectara(text):
 
84
 
85
 
86
 
87
+ def process_image(image):
88
+ # Save the image to a file
89
  img_name = f"{np.random.randint(0, 100)}.jpg"
90
  PIL.Image.fromarray(image.astype('uint8'), 'RGB').save(img_name)
 
 
 
 
 
 
 
 
 
91
 
92
+ # Prepare the payload for the Gradio client
93
  payload = {
94
+ "data": [
95
+ img_name, # File path of the saved image
96
+ "Hello!!" # Example text, replace with relevant text if needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  ],
98
+ "api_name": "/http_bot"
99
  }
100
 
101
+ # Initialize the Gradio client
102
+ client = Client("https://teamtonic-otterhd-demo.hf.space/--replicas/rcng4/")
103
 
104
+ try:
105
+ # Send the request to the Gradio client
106
+ result = client.predict(payload)
107
+ return result
108
+ except Exception as e:
109
+ return f"Error: {e}"
 
110
 
111
 
112
  def query_vectara(text):