from gradio_client import Client import numpy as np import gradio as gr import requests import json import dotenv import soundfile as sf import time import textwrap from PIL import Image from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel, PeftConfig import torch import os import uuid welcome_message = """ # 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷 🗣️📝 This is an educational and accessible conversational tool. ### How To Use ⚕🗣️😷MultiMed⚕: 🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using image, audio or text! 📚🌟💼 that uses [Tonic/stablemed](https://huggingface.co/Tonic/stablemed) and [adept/fuyu-8B](https://huggingface.co/adept/fuyu-8b) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval. do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: Duplicate Space ### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" """ languages = { "English": "eng", "Modern Standard Arabic": "arb", "Bengali": "ben", "Catalan": "cat", "Czech": "ces", "Mandarin Chinese": "cmn", "Welsh": "cym", "Danish": "dan", "German": "deu", "Estonian": "est", "Finnish": "fin", "French": "fra", "Hindi": "hin", "Indonesian": "ind", "Italian": "ita", "Japanese": "jpn", "Korean": "kor", "Maltese": "mlt", "Dutch": "nld", "Western Persian": "pes", "Polish": "pol", "Portuguese": "por", "Romanian": "ron", "Russian": "rus", "Slovak": "slk", "Spanish": "spa", "Swedish": "swe", "Swahili": "swh", "Telugu": "tel", "Tagalog": "tgl", "Thai": "tha", "Turkish": "tur", "Ukrainian": "ukr", "Urdu": "urd", "Northern Uzbek": "uzn", "Vietnamese": "vie" } # Global variables to hold component references components = {} dotenv.load_dotenv() seamless_client = Client("facebook/seamless_m4t") HuggingFace_Token = os.getenv("HuggingFace_Token") hf_token = os.getenv("HuggingFace_Token") base_model_id = os.getenv('BASE_MODEL_ID', 'default_base_model_id') model_directory = os.getenv('MODEL_DIRECTORY', 'default_model_directory') device = "cuda" if torch.cuda.is_available() else "cpu" image_description = "" # audio_output = "" # global markdown_output # global audio_output def check_hallucination(assertion, citation): api_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model" header = {"Authorization": f"Bearer {hf_token}"} payload = {"inputs": f"{assertion} [SEP] {citation}"} response = requests.post(api_url, headers=header, json=payload, timeout=120) output = response.json() output = output[0][0]["score"] return f"**hallucination score:** {output}" # Define the API parameters vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model" headers = {"Authorization": f"Bearer {hf_token}"} # Function to query the API def query(payload): response = requests.post(vapi_url, headers=headers, json=payload) return response.json() # Function to evaluate hallucination def evaluate_hallucination(input1, input2): # Combine the inputs combined_input = f"{input1}. {input2}" # Make the API call output = query({"inputs": combined_input}) # Extract the score from the output score = output[0][0]['score'] # Generate a label based on the score if score < 0.5: label = f"🔴 High risk. Score: {score:.2f}" else: label = f"🟢 Low risk. Score: {score:.2f}" return label def save_audio(audio_input, output_dir="saved_audio"): if not os.path.exists(output_dir): os.makedirs(output_dir) # Extract sample rate and audio data sample_rate, audio_data = audio_input # Generate a unique file name file_name = f"audio_{int(time.time())}.wav" file_path = os.path.join(output_dir, file_name) # Save the audio file sf.write(file_path, audio_data, sample_rate) return file_path def save_image(image_input, output_dir="saved_images"): if not os.path.exists(output_dir): os.makedirs(output_dir) # Assuming image_input is a NumPy array if isinstance(image_input, np.ndarray): # Convert NumPy arrays to PIL Image image = Image.fromarray(image_input) # Generate a unique file name file_name = f"image_{int(time.time())}.png" file_path = os.path.join(output_dir, file_name) # Save the image file image.save(file_path) return file_path else: raise ValueError("Invalid image input type") def process_speech(input_language, audio_input): """ processing sound using seamless_m4t """ if audio_input is None: return "no audio or audio did not save yet \nplease try again ! " print(f"audio : {audio_input}") print(f"audio type : {type(audio_input)}") out = seamless_client.predict( "S2TT", "file", None, audio_input, "", input_language, "English", api_name="/run", ) out = out[1] # get the text try: return f"{out}" except Exception as e: return f"{e}" def is_base64(s): try: return base64.b64encode(base64.b64decode(s)) == s.encode() except Exception: return False def convert_text_to_speech(input_text: str, source_language: str, target_language: str) -> tuple[str, str]: client = Client("https://facebook-seamless-m4t.hf.space/--replicas/8cllp/") try: # Make a prediction request to the client result = client.predict( "T2ST", "text", # Since we are doing text-to-speech None, None, input_text, source_language, target_language, api_name="/run" ) # Print or log the raw API response for inspection print("Raw API Response:", result) # Initialize variables translated_text = "" audio_file_path = "" # Process the result if result: for item in result: if isinstance(item, str): # Check if the item is a URL pointing to an audio file or a base64 encoded string if any(ext in item.lower() for ext in ['.mp3', '.wav', '.ogg']) or is_base64(item): if not audio_file_path: # Store only the first audio file path or base64 string audio_file_path = item else: # Concatenate the translated text translated_text += item + " " return audio_file_path, translated_text.strip() except Exception as e: print(f"Error in text-to-speech conversion: {str(e)}") return None, f"Error in text-to-speech conversion: {str(e)}" def query_vectara(text): user_message = text # Read authentication parameters from the .env file customer_id = os.getenv('CUSTOMER_ID') corpus_id = os.getenv('CORPUS_ID') api_key = os.getenv('API_KEY') # Define the headers api_key_header = { "customer-id": customer_id, "x-api-key": api_key } # Define the request body in the structure provided in the example request_body = { "query": [ { "query": user_message, "queryContext": "", "start": 1, "numResults": 25, "contextConfig": { "charsBefore": 0, "charsAfter": 0, "sentencesBefore": 2, "sentencesAfter": 2, "startTag": "%START_SNIPPET%", "endTag": "%END_SNIPPET%", }, "rerankingConfig": { "rerankerId": 272725718, "mmrConfig": { "diversityBias": 0.35 } }, "corpusKey": [ { "customerId": customer_id, "corpusId": corpus_id, "semantics": 0, "metadataFilter": "", "lexicalInterpolationConfig": { "lambda": 0 }, "dim": [] } ], "summary": [ { "maxSummarizedResults": 5, "responseLang": "auto", "summarizerPromptName": "vectara-summary-ext-v1.2.0" } ] } ] } # Make the API request using Gradio response = requests.post( "https://api.vectara.io/v1/query", json=request_body, # Use json to automatically serialize the request body verify=True, headers=api_key_header ) if response.status_code == 200: query_data = response.json() if query_data: sources_info = [] # Extract the summary. summary = query_data['responseSet'][0]['summary'][0]['text'] # Iterate over all response sets for response_set in query_data.get('responseSet', []): # Extract sources # Limit to top 5 sources. for source in response_set.get('response', [])[:5]: source_metadata = source.get('metadata', []) source_info = {} for metadata in source_metadata: metadata_name = metadata.get('name', '') metadata_value = metadata.get('value', '') if metadata_name == 'title': source_info['title'] = metadata_value elif metadata_name == 'author': source_info['author'] = metadata_value elif metadata_name == 'pageNumber': source_info['page number'] = metadata_value if source_info: sources_info.append(source_info) result = {"summary": summary, "sources": sources_info} return f"{json.dumps(result, indent=2)}" else: return "No data found in the response." else: return f"Error: {response.status_code}" # Functions to Wrap the Prompt Correctly def wrap_text(text, width=90): lines = text.split('\n') wrapped_lines = [textwrap.fill(line, width=width) for line in lines] wrapped_text = '\n'.join(wrapped_lines) return wrapped_text def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"): # Combine user input and system prompt formatted_input = f"{user_input}{system_prompt}" # Encode the input text encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False) model_inputs = encodeds.to(device) # Generate a response using the model //MODEL UNDEFINED, using peft_model instead. output = peft_model.generate( **model_inputs, max_length=512, use_cache=True, early_stopping=True, bos_token_id=peft_model.config.bos_token_id, eos_token_id=peft_model.config.eos_token_id, pad_token_id=peft_model.config.eos_token_id, temperature=0.1, do_sample=True ) # Decode the response response_text = tokenizer.decode(output[0], skip_special_tokens=True) return response_text # Instantiate the Tokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left") # tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = 'left' # Load the PEFT model peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token) peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True) peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token) class ChatBot: def __init__(self): self.history = [] @staticmethod def doctor(user_input, system_prompt="You are an expert medical analyst:"): formatted_input = f"{system_prompt}{user_input}" user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt") response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id) response_text = tokenizer.decode(response[0], skip_special_tokens=True) return response_text bot = ChatBot() def process_summary_with_stablemed(summary): system_prompt = "You are a medical instructor . Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description." response_text = bot.doctor(summary, system_prompt) return response_text # Main function to handle the Gradio interface logic def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None): try: combined_text = "" markdown_output = "" image_text = "" language_code = None # Convert input language to its code if input_language and input_language in languages: language_code = languages[input_language] # Debugging print statement print(f"Image Input Type: {type(image_input)}, Audio Input Type: {type(audio_input)}") # Process image input if image_input is not None: # Convert image_input to a file path image_file_path = save_image(image_input) image_text = process_image(image_file_path) combined_text += "\n\n**Image Input:**\n" + image_text # Process audio input elif audio_input is not None: audio_file_path = save_audio(audio_input) audio_text = process_speech(input_language, audio_file_path) combined_text += "\n\n**Audio Input:**\n" + audio_text # Process text input elif text_input is not None and text_input.strip(): combined_text += "The user asks the following to his health adviser: " + text_input # Check if combined text is empty else: return "Error: Please provide some input (text, audio, or image)." # Append the original image description in Markdown if image_text: markdown_output += "\n### Original Image Description\n" markdown_output += image_text + "\n" # Use the text to query Vectara vectara_response_json = query_vectara(combined_text) # Parse the Vectara response vectara_response = json.loads(vectara_response_json) summary = vectara_response.get('summary', 'No summary available') sources_info = vectara_response.get('sources', []) # Format Vectara response in Markdown markdown_output = "### Vectara Response Summary\n" markdown_output += f"* **Summary**: {summary}\n" markdown_output += "### Sources Information\n" for source in sources_info: markdown_output += f"* {source}\n" # Process the summary with Stablemed final_response = process_summary_with_stablemed(summary) # Convert translated text to speech and get both audio file and text target_language = "English" # Set the target language for the speech audio_output, translated_text = convert_text_to_speech(final_response, target_language, input_language) # Evaluate hallucination hallucination_label = evaluate_hallucination(final_response, summary) # Add final response and hallucination label to Markdown output markdown_output += "\n### Processed Summary with StableMed\n" markdown_output += final_response + "\n" markdown_output += "\n### Hallucination Evaluation\n" markdown_output += f"* **Label**: {hallucination_label}\n" markdown_output += "\n### Translated Text\n" markdown_output += translated_text + "\n" return markdown_output, audio_output except Exception as e: return f"Error occurred during processing: {e}. No hallucination evaluation.", None def clear(): # Return default values for each component return "English", None, None, "", None def create_interface(): # with gr.Blocks(theme='ParityError/Anime') as iface: with gr.Blocks(theme='ParityError/Anime') as interface: # Display the welcome message gr.Markdown(welcome_message) # Extract the full names of the languages language_names = list(languages.keys()) # Add a 'None' or similar option to represent no selection input_language_options = ["None"] + language_names # Create a dropdown for language selection input_language = gr.Dropdown(input_language_options, label="Select the language", value="English", interactive=True) with gr.Accordion("Use Voice", open=False) as voice_accordion: audio_input = gr.Audio(label="Speak") audio_output = gr.Markdown(label="Output text") # Markdown component for audio gr.Examples([["audio1.wav"], ["audio2.wav"], ], inputs=[audio_input]) with gr.Accordion("Use a Picture", open=False) as picture_accordion: image_input = gr.Image(label="Upload image") image_output = gr.Markdown(label="Output text") # Markdown component for image gr.Examples([["image1.png"], ["image2.jpeg"], ["image3.jpeg"], ], inputs=[image_input]) with gr.Accordion("MultiMed", open=False) as multimend_accordion: text_input = gr.Textbox(label="Use Text", lines=3, placeholder="I have had a sore throat and phlegm for a few days and now my cough has gotten worse!") gr.Examples([ ["What is the proper treatment for buccal herpes?"], ["I have had a sore throat and hoarse voice for several days and now a strong cough recently "], ["How does cellular metabolism work TCA cycle"], ["What special care must be provided to children with chicken pox?"], ["When and how often should I wash my hands?"], ["بکل ہرپس کا صحیح علاج کیا ہے؟"], ["구강 헤르페스의 적절한 치료법은 무엇입니까?"], ["Je, ni matibabu gani sahihi kwa herpes ya buccal?"], ], inputs=[text_input]) text_output = gr.Markdown(label="MultiMed") audio_output = gr.Audio(label="Audio Out", type="filepath") text_button = gr.Button("Use MultiMed") text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, audio_output]) clear_button = gr.Button("Clear") clear_button.click(clear, inputs=[], outputs=[input_language, audio_input, image_input, text_output, audio_output]) return interface app = create_interface() app.launch(show_error=True, debug=True)