# Welcome to Team Tonic's MultiMed from gradio_client import Client import os import numpy as np import base64 import gradio as gr import requests import json import dotenv from scipy.io.wavfile import write import PIL from openai import OpenAI import time dotenv.load_dotenv() seamless_client = Client("facebook/seamless_m4t") def process_speech(audio_input,input_language,target_language): """ processing sound using seamless_m4t """ time.sleep(2) # wait for the audio to be saved print(f"audio : {audio_input}") print(f"audio type : {type(audio_input)}") try : audio_name = f"{np.random.randint(0, 100)}.wav" sr, data = audio_input write(audio_name, sr, data.astype(np.int16)) audio_input = audio_name except : pass out = seamless_client.predict( "S2TT", "file", None, audio_input, #audio_name "", input_language,# Use selected input language as the source language input_language,# Use selected input language as the target language api_name="/run", ) out = out[1] # get the text try : return f"{out}" except Exception as e : return f"{e}" def process_image(image) : img_name = f"{np.random.randint(0, 100)}.jpg" PIL.Image.fromarray(image.astype('uint8'), 'RGB').save(img_name) image = open(img_name, "rb").read() base64_image = base64_image = base64.b64encode(image).decode('utf-8') openai_api_key = os.getenv('OPENAI_API_KEY') # oai_org = os.getenv('OAI_ORG') headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}" } payload = { "model": "gpt-4-vision-preview", "messages": [ { "role": "user", "content": [ { "type": "text", "text": "You are clinical consultant discussion training cases with students at TonicUniversity. Assess and describe the photo in minute detail. Explain why each area or item in the photograph would be inappropriate to describe if required. Pay attention to anatomy, symptoms and remedies. Propose a course of action based on your assessment. Exclude any other commentary:" }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } } ] } ], "max_tokens": 1200 } response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) try : out = response.json() out = out["choices"][0]["message"]["content"] return out except Exception as e : return f"{e}" def query_vectara(text): user_message = text # Read authentication parameters from the .env file CUSTOMER_ID = os.getenv('CUSTOMER_ID') CORPUS_ID = os.getenv('CORPUS_ID') API_KEY = os.getenv('API_KEY') # Define the headers api_key_header = { "customer-id": CUSTOMER_ID, "x-api-key": API_KEY } # Define the request body in the structure provided in the example request_body = { "query": [ { "query": user_message, "queryContext": "", "start": 1, "numResults": 50, "contextConfig": { "charsBefore": 0, "charsAfter": 0, "sentencesBefore": 2, "sentencesAfter": 2, "startTag": "%START_SNIPPET%", "endTag": "%END_SNIPPET%", }, "rerankingConfig": { "rerankerId": 272725718, "mmrConfig": { "diversityBias": 0.35 } }, "corpusKey": [ { "customerId": CUSTOMER_ID, "corpusId": CORPUS_ID, "semantics": 0, "metadataFilter": "", "lexicalInterpolationConfig": { "lambda": 0 }, "dim": [] } ], "summary": [ { "maxSummarizedResults": 5, "responseLang": "auto", "summarizerPromptName": "vectara-summary-ext-v1.2.0" } ] } ] } # Make the API request using Gradio response = requests.post( "https://api.vectara.io/v1/query", json=request_body, # Use json to automatically serialize the request body verify=True, headers=api_key_header ) if response.status_code == 200: query_data = response.json() if query_data: sources_info = [] # Extract the summary. summary = query_data['responseSet'][0]['summary'][0]['text'] # Iterate over all response sets for response_set in query_data.get('responseSet', []): # Extract sources # Limit to top 5 sources. for source in response_set.get('response', [])[:5]: source_metadata = source.get('metadata', []) source_info = {} for metadata in source_metadata: metadata_name = metadata.get('name', '') metadata_value = metadata.get('value', '') if metadata_name == 'title': source_info['title'] = metadata_value elif metadata_name == 'author': source_info['author'] = metadata_value elif metadata_name == 'pageNumber': source_info['page number'] = metadata_value if source_info: sources_info.append(source_info) result = {"summary": summary, "sources": sources_info} return f"{json.dumps(result, indent=2)}" else: return "No data found in the response." else: return f"Error: {response.status_code}" def convert_to_markdown(vectara_response_json): vectara_response = json.loads(vectara_response_json) if vectara_response: summary = vectara_response.get('summary', 'No summary available') sources_info = vectara_response.get('sources', []) # Format the summary as Markdown markdown_summary = f'**Summary:** {summary}\n\n' # Format the sources as a numbered list markdown_sources = "" for i, source_info in enumerate(sources_info): author = source_info.get('author', 'Unknown author') title = source_info.get('title', 'Unknown title') page_number = source_info.get('page number', 'Unknown page number') markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n" return f"{markdown_summary}**Sources:**\n{markdown_sources}" else: return "No data found in the response." # Main function to handle the Gradio interface logic def process_and_query(text=None): try: # augment the prompt before feeding it to vectara text = "the user asks the following to his health adviser " + text # If an image is provided, process it with OpenAI and use the response as the text query for Vectara # if image is not None: # text = process_image(image) # return "**Summary:** "+text # if audio is not None: # text = process_speech(audio) # # augment the prompt before feeding it to vectara # text = "the user asks the following to his health adviser " + text # Now, use the text (either provided by the user or obtained from OpenAI) to query Vectara vectara_response_json = query_vectara(text) markdown_output = convert_to_markdown(vectara_response_json) client = OpenAI() prompt ="Answer in the same language, write it better, more understandable and shorter:" markdown_output_final = markdown_output completion = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": markdown_output_final} ] ) final_response= completion.choices[0].message.content return final_response except Exception as e: return str(e) # Define the Gradio interface # iface = gr.Interface( # fn=process_and_query, # inputs=[ # gr.Textbox(label="Input Text"), # gr.Image(label="Upload Image"), # gr.Audio(label="talk in french", # sources=["microphone"]), # ], # outputs=[gr.Markdown(label="Output Text")], # title="👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷", # description=''' # ### How To Use ⚕🗣️😷MultiMed⚕: # #### 🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using audio or text! # #### 🗣️📝 This is an educational and accessible conversational tool to improve wellness and sanitation in support of public health. # #### 📚🌟💼 The knowledge base is composed of publicly available medical and health sources in multiple languages. We also used [Kelvalya/MedAware](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset) that we processed and converted to HTML. The quality of the answers depends on the quality of the dataset, so if you want to see some data represented here, do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: Duplicate Space # #### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" # ''', # theme='ParityError/Anime', # examples=[ # ["What is the proper treatment for buccal herpes?"], # ["Male, 40 presenting with swollen glands and a rash"], # ["How does cellular metabolism work TCA cycle"], # ["What special care must be provided to children with chicken pox?"], # ["When and how often should I wash my hands ?"], # ["بکل ہرپس کا صحیح علاج کیا ہے؟"], # ["구강 헤르페스의 적절한 치료법은 무엇입니까?"], # ["Je, ni matibabu gani sahihi kwa herpes ya buccal?"], # ], # ) welcome_message = """ # 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷 ### How To Use ⚕🗣️😷MultiMed⚕: #### 🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using audio or text! #### 🗣️📝 This is an educational and accessible conversational tool to improve wellness and sanitation in support of public health. #### 📚🌟💼 The knowledge base is composed of publicly available medical and health sources in multiple languages. We also used [Kelvalya/MedAware](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset) that we processed and converted to HTML. The quality of the answers depends on the quality of the dataset, so if you want to see some data represented here, do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: Duplicate Space #### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)" """ languages = [ "Afrikaans", "Amharic", "Modern Standard Arabic", "Moroccan Arabic", "Egyptian Arabic", "Assamese", "Asturian", "North Azerbaijani", "Belarusian", "Bengali", "Bosnian", "Bulgarian", "Catalan", "Cebuano", "Czech", "Central Kurdish", "Mandarin Chinese", "Welsh", "Danish", "German", "Greek", "English", "Estonian", "Basque", "Finnish", "French", "West Central Oromo", "Irish", "Galician", "Gujarati", "Hebrew", "Hindi", "Croatian", "Hungarian", "Armenian", "Igbo", "Indonesian", "Icelandic", "Italian", "Javanese", "Japanese", "Kamba", "Kannada", "Georgian", "Kazakh", "Kabuverdianu", "Halh Mongolian", "Khmer", "Kyrgyz", "Korean", "Lao", "Lithuanian", "Luxembourgish", "Ganda", "Luo", "Standard Latvian", "Maithili", "Malayalam", "Marathi", "Macedonian", "Maltese", "Meitei", "Burmese", "Dutch", "Norwegian Nynorsk", "Norwegian Bokmål", "Nepali", "Nyanja", "Occitan", "Odia", "Punjabi", "Southern Pashto", "Western Persian", "Polish", "Portuguese", "Romanian", "Russian", "Slovak", "Slovenian", "Shona", "Sindhi", "Somali", "Spanish", "Serbian", "Swedish", "Swahili", "Tamil", "Telugu", "Tajik", "Tagalog", "Thai", "Turkish", "Ukrainian", "Urdu", "Northern Uzbek", "Vietnamese", "Xhosa", "Yoruba", "Cantonese", "Colloquial Malay", "Standard Malay", "Zulu" ] with gr.Blocks(theme='ParityError/Anime') as iface : gr.Markdown(welcome_message) with gr.Tab("text summarization"): text_input = gr.Textbox(label="input text",lines=5) text_output = gr.Markdown(label="output text") text_button = gr.Button("process text") with gr.Tab("image identification"): image_input = gr.Image(label="upload image") image_output = gr.Markdown(label="output text") image_button = gr.Button("process image") with gr.Tab("speech to text translation"): with gr.Row(): input_language = gr.Dropdown(languages, label="input language",value="French",interactive=True) target_language = gr.Dropdown(languages, label="target language",value="English",interactive=True) audio_input = gr.Audio(label="speak",type="filepath",sources="microphone") audio_output = gr.Markdown(label="output text") audio_button = gr.Button("process audio") text_button.click(process_and_query, inputs=text_input, outputs=text_output) image_button.click(process_image, inputs=image_input, outputs=image_output) audio_button.click(process_speech, inputs=[audio_input,input_language,target_language], outputs=audio_output) iface.queue().launch(show_error=True,debug=True)