Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,9 @@ from langchain.chains import ConversationChain
|
|
9 |
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
|
10 |
import os
|
11 |
|
|
|
|
|
|
|
12 |
# Access environment variables
|
13 |
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
14 |
huggingface_api_token = os.environ.get("HUGGINGFACE_API_TOKEN")
|
@@ -30,13 +33,24 @@ def gradio_client_interaction(prompt):
|
|
30 |
result = client.predict(prompt, prompt, api_name="/predict")
|
31 |
return result['data'][0] # Assuming the response format
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
conversation = ConversationChain(
|
35 |
-
llm=
|
36 |
verbose=True,
|
37 |
memory=window_memory
|
38 |
)
|
39 |
-
|
40 |
# Update the conversation prompt template
|
41 |
conversation.prompt.template = '''The following is a consult between a clinical consultant and a public health and medical expert. The AI is an expert on medicine and public health and gives recommendations specific to location and conditions. If the AI does not know the answer to a question, it truthfully says it does not know.
|
42 |
Current conversation:
|
|
|
9 |
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
|
10 |
import os
|
11 |
|
12 |
+
from langchain.llms import Runnable
|
13 |
+
|
14 |
+
|
15 |
# Access environment variables
|
16 |
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
17 |
huggingface_api_token = os.environ.get("HUGGINGFACE_API_TOKEN")
|
|
|
33 |
result = client.predict(prompt, prompt, api_name="/predict")
|
34 |
return result['data'][0] # Assuming the response format
|
35 |
|
36 |
+
class GradioLLM(Runnable):
|
37 |
+
def __init__(self, client_url):
|
38 |
+
self.client = Client(client_url)
|
39 |
+
|
40 |
+
def generate(self, prompt, **kwargs):
|
41 |
+
# Assuming the API expects 'prompt' and 'system_prompt' as inputs
|
42 |
+
result = self.client.predict(prompt, prompt, api_name="/predict")
|
43 |
+
return result['data'][0] # Adjust based on the actual response format
|
44 |
+
|
45 |
+
# Initialize the GradioLLM with the URL
|
46 |
+
gradio_llm = GradioLLM("https://tonic-stablemed-chat.hf.space/")
|
47 |
+
|
48 |
+
# Create the ConversationChain with the GradioLLM
|
49 |
conversation = ConversationChain(
|
50 |
+
llm=gradio_llm,
|
51 |
verbose=True,
|
52 |
memory=window_memory
|
53 |
)
|
|
|
54 |
# Update the conversation prompt template
|
55 |
conversation.prompt.template = '''The following is a consult between a clinical consultant and a public health and medical expert. The AI is an expert on medicine and public health and gives recommendations specific to location and conditions. If the AI does not know the answer to a question, it truthfully says it does not know.
|
56 |
Current conversation:
|