Spaces:
Runtime error
Runtime error
Update ingest.py
Browse files
ingest.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
# ingest.py
|
2 |
"""
|
3 |
-
Create
|
4 |
|
5 |
-
Default
|
6 |
-
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
|
|
|
11 |
"""
|
12 |
|
13 |
from pathlib import Path
|
@@ -16,10 +17,10 @@ from typing import List
|
|
16 |
from langchain_community.vectorstores import FAISS
|
17 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
18 |
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
|
24 |
|
25 |
class Ingest:
|
@@ -27,26 +28,28 @@ class Ingest:
|
|
27 |
def __init__(
|
28 |
self,
|
29 |
*,
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
openai_api_key:
|
36 |
-
|
|
|
37 |
chunk: int = 512,
|
38 |
overlap: int = 256,
|
39 |
-
#
|
40 |
english_store: str = "stores/english_512",
|
41 |
czech_store: str = "stores/czech_512",
|
42 |
data_english: str = "data/english",
|
43 |
data_czech: str = "data/czech",
|
44 |
):
|
45 |
-
self.
|
46 |
-
self.
|
47 |
-
|
48 |
-
self.
|
49 |
-
self.
|
|
|
50 |
|
51 |
self.chunk = chunk
|
52 |
self.overlap = overlap
|
@@ -58,89 +61,84 @@ class Ingest:
|
|
58 |
|
59 |
# --------------------------- helpers ---------------------------------- #
|
60 |
@staticmethod
|
61 |
-
def
|
62 |
return DirectoryLoader(
|
63 |
str(folder),
|
64 |
recursive=True,
|
65 |
-
show_progress=True,
|
66 |
loader_cls=PyPDFLoader,
|
|
|
67 |
use_multithreading=True,
|
68 |
).load()
|
69 |
|
70 |
@staticmethod
|
71 |
def _split(docs: List, chunk: int, overlap: int):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
# --------------------------- English ---------------------------------- #
|
77 |
def ingest_english(self):
|
78 |
-
if self.
|
79 |
-
if not self.
|
80 |
-
raise ValueError("
|
81 |
-
|
82 |
-
openai_api_key=self.
|
83 |
-
model=self.
|
84 |
)
|
85 |
-
mode = f"OpenAI ({self.
|
86 |
else:
|
87 |
-
|
88 |
-
model_name=self.
|
89 |
model_kwargs={"device": "cpu"},
|
90 |
encode_kwargs={"normalize_embeddings": False},
|
91 |
)
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
print(f"\n
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
db = FAISS.from_documents(texts, embedding)
|
100 |
-
db.save_local(str(self.english_store))
|
101 |
-
print("β English store written to", self.english_store, "\n")
|
102 |
|
103 |
# --------------------------- Czech ------------------------------------ #
|
104 |
def ingest_czech(self):
|
105 |
-
|
106 |
-
model_name=self.
|
107 |
model_kwargs={"device": "cpu"},
|
108 |
encode_kwargs={"normalize_embeddings": False},
|
109 |
)
|
110 |
-
dim =
|
111 |
-
print(f"\n
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
115 |
|
116 |
-
db = FAISS.from_documents(texts, embedding)
|
117 |
-
db.save_local(str(self.czech_store))
|
118 |
-
print("β Czech store written to", self.czech_store, "\n")
|
119 |
|
120 |
-
|
121 |
-
# -------------------- quick CLI helper ------------------------------------ #
|
122 |
if __name__ == "__main__":
|
123 |
"""
|
124 |
-
Examples
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
OPENAI_API_KEY=sk-... python ingest.py --openai
|
130 |
"""
|
131 |
import argparse, os
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
args =
|
139 |
|
140 |
-
ing = Ingest(
|
141 |
-
|
|
|
|
|
142 |
|
143 |
-
if args.
|
144 |
ing.ingest_english()
|
145 |
-
if args.
|
146 |
ing.ingest_czech()
|
|
|
1 |
# ingest.py
|
2 |
"""
|
3 |
+
Create FAISS indices for Czech and English PDFs.
|
4 |
|
5 |
+
Default (matches backend/main.py):
|
6 |
+
β’ English embeddings : sentence-transformers/all-MiniLM-L6-v2 (384-d)
|
7 |
+
β’ Czech embeddings : Seznam/retromae-small-cs (768-d)
|
8 |
|
9 |
+
If you still need a legacy English store with OpenAI
|
10 |
+
`text-embedding-3-large` (3 072-d), instantiate with
|
11 |
+
use_openai_embeddings=True and pass OPENAI_API_KEY.
|
12 |
"""
|
13 |
|
14 |
from pathlib import Path
|
|
|
17 |
from langchain_community.vectorstores import FAISS
|
18 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
19 |
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
|
20 |
+
|
21 |
+
# β updated import (fixes deprecation warning) ----------------------[2][3]
|
22 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
23 |
+
from langchain.embeddings import OpenAIEmbeddings
|
24 |
|
25 |
|
26 |
class Ingest:
|
|
|
28 |
def __init__(
|
29 |
self,
|
30 |
*,
|
31 |
+
# names must stay exactly like in backend/main.py
|
32 |
+
english_embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2",
|
33 |
+
czech_embedding_model: str = "Seznam/retromae-small-cs",
|
34 |
+
# optional OpenAI path
|
35 |
+
use_openai_embeddings: bool = False,
|
36 |
+
openai_api_key: str | None = None,
|
37 |
+
openai_embedding_model: str = "text-embedding-3-large",
|
38 |
+
# chunking
|
39 |
chunk: int = 512,
|
40 |
overlap: int = 256,
|
41 |
+
# folders
|
42 |
english_store: str = "stores/english_512",
|
43 |
czech_store: str = "stores/czech_512",
|
44 |
data_english: str = "data/english",
|
45 |
data_czech: str = "data/czech",
|
46 |
):
|
47 |
+
self.english_embedding_model = english_embedding_model
|
48 |
+
self.czech_embedding_model = czech_embedding_model
|
49 |
+
|
50 |
+
self.use_openai_embeddings = use_openai_embeddings
|
51 |
+
self.openai_api_key = openai_api_key
|
52 |
+
self.openai_embedding_model = openai_embedding_model
|
53 |
|
54 |
self.chunk = chunk
|
55 |
self.overlap = overlap
|
|
|
61 |
|
62 |
# --------------------------- helpers ---------------------------------- #
|
63 |
@staticmethod
|
64 |
+
def _load(folder: Path):
|
65 |
return DirectoryLoader(
|
66 |
str(folder),
|
67 |
recursive=True,
|
|
|
68 |
loader_cls=PyPDFLoader,
|
69 |
+
show_progress=True,
|
70 |
use_multithreading=True,
|
71 |
).load()
|
72 |
|
73 |
@staticmethod
|
74 |
def _split(docs: List, chunk: int, overlap: int):
|
75 |
+
return RecursiveCharacterTextSplitter(
|
76 |
+
chunk_size=chunk, chunk_overlap=overlap
|
77 |
+
).split_documents(docs)
|
78 |
|
79 |
# --------------------------- English ---------------------------------- #
|
80 |
def ingest_english(self):
|
81 |
+
if self.use_openai_embeddings:
|
82 |
+
if not self.openai_api_key:
|
83 |
+
raise ValueError("OPENAI_API_KEY missing for OpenAI embeddings.")
|
84 |
+
embed = OpenAIEmbeddings(
|
85 |
+
openai_api_key=self.openai_api_key,
|
86 |
+
model=self.openai_embedding_model,
|
87 |
)
|
88 |
+
mode = f"OpenAI ({self.openai_embedding_model}) 3 072-d"
|
89 |
else:
|
90 |
+
embed = HuggingFaceEmbeddings(
|
91 |
+
model_name=self.english_embedding_model,
|
92 |
model_kwargs={"device": "cpu"},
|
93 |
encode_kwargs={"normalize_embeddings": False},
|
94 |
)
|
95 |
+
dim = embed.client.get_sentence_embedding_dimension()
|
96 |
+
mode = f"HuggingFace ({self.english_embedding_model}) {dim}-d"
|
97 |
|
98 |
+
print(f"\nββ Building English index with {mode}")
|
99 |
+
texts = self._split(self._load(self.data_english), self.chunk, self.overlap)
|
100 |
+
FAISS.from_documents(texts, embed).save_local(str(self.english_store))
|
101 |
+
print("β English store saved to", self.english_store, "\n")
|
|
|
|
|
|
|
102 |
|
103 |
# --------------------------- Czech ------------------------------------ #
|
104 |
def ingest_czech(self):
|
105 |
+
embed = HuggingFaceEmbeddings(
|
106 |
+
model_name=self.czech_embedding_model,
|
107 |
model_kwargs={"device": "cpu"},
|
108 |
encode_kwargs={"normalize_embeddings": False},
|
109 |
)
|
110 |
+
dim = embed.client.get_sentence_embedding_dimension()
|
111 |
+
print(f"\nββ Building Czech index with HuggingFace "
|
112 |
+
f"({self.czech_embedding_model}) {dim}-d")
|
113 |
+
texts = self._split(self._load(self.data_czech), self.chunk, self.overlap)
|
114 |
+
FAISS.from_documents(texts, embed).save_local(str(self.czech_store))
|
115 |
+
print("β Czech store saved to", self.czech_store, "\n")
|
116 |
|
|
|
|
|
|
|
117 |
|
118 |
+
# βββββββββββββ CLI helper (optional) βββββββββββββ #
|
|
|
119 |
if __name__ == "__main__":
|
120 |
"""
|
121 |
+
Examples
|
122 |
+
--------
|
123 |
+
python ingest.py # builds both stores (OSS embeddings)
|
124 |
+
OPENAI_API_KEY=sk-... \
|
125 |
+
python ingest.py --openai en # rebuild English with OpenAI encoder
|
|
|
126 |
"""
|
127 |
import argparse, os
|
128 |
|
129 |
+
p = argparse.ArgumentParser()
|
130 |
+
p.add_argument("--openai", action="store_true",
|
131 |
+
help="Use OpenAI embeddings for English store.")
|
132 |
+
p.add_argument("lang", nargs="?", choices=["en", "cz"],
|
133 |
+
help="Only ingest this language.")
|
134 |
+
args = p.parse_args()
|
135 |
|
136 |
+
ing = Ingest(
|
137 |
+
use_openai_embeddings=args.openai,
|
138 |
+
openai_api_key=os.getenv("OPENAI_API_KEY"),
|
139 |
+
)
|
140 |
|
141 |
+
if args.lang in (None, "en"):
|
142 |
ing.ingest_english()
|
143 |
+
if args.lang in (None, "cz"):
|
144 |
ing.ingest_czech()
|