Spaces:
Runtime error
Runtime error
Update ingest.py
Browse files
ingest.py
CHANGED
@@ -1,92 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from langchain_community.vectorstores import FAISS
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
-
|
4 |
-
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
|
5 |
from langchain.embeddings import (
|
6 |
OpenAIEmbeddings,
|
7 |
-
HuggingFaceBgeEmbeddings,
|
8 |
HuggingFaceEmbeddings,
|
9 |
-
HuggingFaceInstructEmbeddings,
|
10 |
)
|
11 |
|
12 |
|
13 |
class Ingest:
|
|
|
14 |
def __init__(
|
15 |
self,
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
):
|
26 |
-
self.
|
27 |
-
self.
|
28 |
-
self.
|
29 |
-
self.
|
30 |
-
self.
|
31 |
-
self.data_czech = data_czech
|
32 |
-
self.data_english = data_english
|
33 |
-
self.english_embedding_model = english_embedding_model
|
34 |
-
self.czech_embedding_model = czech_embedding_model
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
show_progress=True,
|
46 |
loader_cls=PyPDFLoader,
|
47 |
-
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
)
|
54 |
-
texts = text_splitter.split_documents(documents)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
|
|
|
|
63 |
|
|
|
64 |
def ingest_czech(self):
|
65 |
-
embedding_model = self.czech_embedding_model
|
66 |
-
model_kwargs = {"device": "cpu"}
|
67 |
-
encode_kwargs = {"normalize_embeddings": False}
|
68 |
embedding = HuggingFaceEmbeddings(
|
69 |
-
model_name=
|
70 |
-
model_kwargs=
|
71 |
-
encode_kwargs=
|
72 |
)
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
show_progress=True,
|
77 |
-
)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
chunk_overlap=self.overlap,
|
83 |
-
)
|
84 |
|
85 |
-
texts = text_splitter.split_documents(documents)
|
86 |
-
vectordb = FAISS.from_documents(
|
87 |
-
documents=texts,
|
88 |
-
embedding=embedding,
|
89 |
-
)
|
90 |
-
vectordb.save_local(self.czech_store)
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ingest.py
|
2 |
+
"""
|
3 |
+
Create / rebuild FAISS vector stores for Czech and English PDFs.
|
4 |
+
|
5 |
+
Default behaviour (matches main.py):
|
6 |
+
• English embeddings : sentence-transformers/all-MiniLM-L6-v2 (384-d)
|
7 |
+
• Czech embeddings : Seznam/retromae-small-cs (768-d)
|
8 |
+
|
9 |
+
Set use_openai=True if you really want to produce an English store
|
10 |
+
with OpenAI's 3 072-d 'text-embedding-3-large' vectors.
|
11 |
+
"""
|
12 |
+
|
13 |
+
from pathlib import Path
|
14 |
+
from typing import List
|
15 |
+
|
16 |
from langchain_community.vectorstores import FAISS
|
17 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
18 |
+
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
|
|
|
19 |
from langchain.embeddings import (
|
20 |
OpenAIEmbeddings,
|
|
|
21 |
HuggingFaceEmbeddings,
|
|
|
22 |
)
|
23 |
|
24 |
|
25 |
class Ingest:
|
26 |
+
# --------------------------------------------------------------------- #
|
27 |
def __init__(
|
28 |
self,
|
29 |
+
*,
|
30 |
+
# --- embeddings ----------------------------------------------------
|
31 |
+
english_hf_model: str = "sentence-transformers/all-MiniLM-L6-v2",
|
32 |
+
czech_hf_model: str = "Seznam/retromae-small-cs",
|
33 |
+
english_oa_model: str = "text-embedding-3-large",
|
34 |
+
use_openai: bool = False, # flip to keep legacy store
|
35 |
+
openai_api_key: str | None = None,
|
36 |
+
# --- chunking ------------------------------------------------------
|
37 |
+
chunk: int = 512,
|
38 |
+
overlap: int = 256,
|
39 |
+
# --- paths ---------------------------------------------------------
|
40 |
+
english_store: str = "stores/english_512",
|
41 |
+
czech_store: str = "stores/czech_512",
|
42 |
+
data_english: str = "data/english",
|
43 |
+
data_czech: str = "data/czech",
|
44 |
):
|
45 |
+
self.use_openai = use_openai
|
46 |
+
self.oa_key = openai_api_key
|
47 |
+
self.english_hf = english_hf_model
|
48 |
+
self.czech_hf = czech_hf_model
|
49 |
+
self.english_oa = english_oa_model
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
self.chunk = chunk
|
52 |
+
self.overlap = overlap
|
53 |
|
54 |
+
self.english_store = Path(english_store)
|
55 |
+
self.czech_store = Path(czech_store)
|
56 |
+
self.data_english = Path(data_english)
|
57 |
+
self.data_czech = Path(data_czech)
|
58 |
|
59 |
+
# --------------------------- helpers ---------------------------------- #
|
60 |
+
@staticmethod
|
61 |
+
def _loader(folder: Path):
|
62 |
+
return DirectoryLoader(
|
63 |
+
str(folder),
|
64 |
+
recursive=True,
|
65 |
show_progress=True,
|
66 |
loader_cls=PyPDFLoader,
|
67 |
+
use_multithreading=True,
|
68 |
+
).load()
|
69 |
|
70 |
+
@staticmethod
|
71 |
+
def _split(docs: List, chunk: int, overlap: int):
|
72 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk,
|
73 |
+
chunk_overlap=overlap)
|
74 |
+
return splitter.split_documents(docs)
|
|
|
75 |
|
76 |
+
# --------------------------- English ---------------------------------- #
|
77 |
+
def ingest_english(self):
|
78 |
+
if self.use_openai:
|
79 |
+
if not self.oa_key:
|
80 |
+
raise ValueError("OpenAI API key is required for OpenAI embeddings.")
|
81 |
+
embedding = OpenAIEmbeddings(
|
82 |
+
openai_api_key=self.oa_key,
|
83 |
+
model=self.english_oa,
|
84 |
+
)
|
85 |
+
mode = f"OpenAI ({self.english_oa}) 3072-d"
|
86 |
+
else:
|
87 |
+
embedding = HuggingFaceEmbeddings(
|
88 |
+
model_name=self.english_hf,
|
89 |
+
model_kwargs={"device": "cpu"},
|
90 |
+
encode_kwargs={"normalize_embeddings": False},
|
91 |
+
)
|
92 |
+
mode = f"HuggingFace ({self.english_hf}) " \
|
93 |
+
f"{embedding.client.get_sentence_embedding_dimension()}-d"
|
94 |
+
|
95 |
+
print(f"\n─ Ingest EN: {mode}")
|
96 |
+
docs = self._loader(self.data_english)
|
97 |
+
texts = self._split(docs, self.chunk, self.overlap)
|
98 |
|
99 |
+
db = FAISS.from_documents(texts, embedding)
|
100 |
+
db.save_local(str(self.english_store))
|
101 |
+
print("✓ English store written to", self.english_store, "\n")
|
102 |
|
103 |
+
# --------------------------- Czech ------------------------------------ #
|
104 |
def ingest_czech(self):
|
|
|
|
|
|
|
105 |
embedding = HuggingFaceEmbeddings(
|
106 |
+
model_name=self.czech_hf,
|
107 |
+
model_kwargs={"device": "cpu"},
|
108 |
+
encode_kwargs={"normalize_embeddings": False},
|
109 |
)
|
110 |
+
dim = embedding.client.get_sentence_embedding_dimension()
|
111 |
+
print(f"\n─ Ingest CZ: HuggingFace ({self.czech_hf}) {dim}-d")
|
112 |
|
113 |
+
docs = self._loader(self.data_czech)
|
114 |
+
texts = self._split(docs, self.chunk, self.overlap)
|
|
|
|
|
115 |
|
116 |
+
db = FAISS.from_documents(texts, embedding)
|
117 |
+
db.save_local(str(self.czech_store))
|
118 |
+
print("✓ Czech store written to", self.czech_store, "\n")
|
|
|
|
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# -------------------- quick CLI helper ------------------------------------ #
|
122 |
+
if __name__ == "__main__":
|
123 |
+
"""
|
124 |
+
Examples:
|
125 |
+
# build both stores with default HF encoders (no OpenAI)
|
126 |
+
python ingest.py
|
127 |
+
|
128 |
+
# build English store with OpenAI encoder (keeps 3 072-d index)
|
129 |
+
OPENAI_API_KEY=sk-... python ingest.py --openai
|
130 |
+
"""
|
131 |
+
import argparse, os
|
132 |
+
|
133 |
+
parser = argparse.ArgumentParser()
|
134 |
+
parser.add_argument("--openai", action="store_true",
|
135 |
+
help="Use OpenAI embeddings for English.")
|
136 |
+
parser.add_argument("--only", choices=["en", "cz"],
|
137 |
+
help="Ingest only that language.")
|
138 |
+
args = parser.parse_args()
|
139 |
+
|
140 |
+
ing = Ingest(use_openai=args.openai,
|
141 |
+
openai_api_key=os.getenv("OPENAI_API_KEY"))
|
142 |
+
|
143 |
+
if args.only in (None, "en"):
|
144 |
+
ing.ingest_english()
|
145 |
+
if args.only in (None, "cz"):
|
146 |
+
ing.ingest_czech()
|