Spaces:
Sleeping
Sleeping
FAISS db store
Browse files- fast_app_cz(obsolete).py +0 -110
- ingest(obsolete).py +0 -59
- ingest.py +0 -38
fast_app_cz(obsolete).py
DELETED
@@ -1,110 +0,0 @@
|
|
1 |
-
from dotenv import load_dotenv
|
2 |
-
import os
|
3 |
-
import json
|
4 |
-
from fastapi import FastAPI, Request, Form, Response
|
5 |
-
from fastapi.responses import HTMLResponse
|
6 |
-
from fastapi.templating import Jinja2Templates
|
7 |
-
from fastapi.staticfiles import StaticFiles
|
8 |
-
from fastapi.encoders import jsonable_encoder
|
9 |
-
from langchain.llms import CTransformers
|
10 |
-
|
11 |
-
from langchain.vectorstores import Chroma
|
12 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
-
|
14 |
-
from langchain.chains import RetrievalQA
|
15 |
-
from langchain.document_loaders import TextLoader, PyPDFLoader, DirectoryLoader
|
16 |
-
from langchain.llms import OpenAI
|
17 |
-
from langchain import PromptTemplate
|
18 |
-
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
|
19 |
-
|
20 |
-
app = FastAPI()
|
21 |
-
load_dotenv()
|
22 |
-
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
23 |
-
templates = Jinja2Templates(directory="templates")
|
24 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
25 |
-
# embedding_model = "Seznam/simcse-dist-mpnet-czeng-cs-en"
|
26 |
-
embedding_model = "Seznam/simcse-dist-mpnet-paracrawl-cs-en"
|
27 |
-
persist_directory = "stores/seznampara_ul_512"
|
28 |
-
|
29 |
-
llm = OpenAI(openai_api_key=openai_api_key)
|
30 |
-
# llm = "model\dolphin-2.6-mistral-7b.Q4_K_S.gguf"
|
31 |
-
# llm = "neural-chat-7b-v3-1.Q4_K_M.gguf"
|
32 |
-
|
33 |
-
|
34 |
-
"""
|
35 |
-
### - Local LLM settings - ###
|
36 |
-
|
37 |
-
config = {
|
38 |
-
"max_new_tokens": 1024,
|
39 |
-
"repetition_penalty": 1.1,
|
40 |
-
"temperature": 0.1,
|
41 |
-
"top_k": 50,
|
42 |
-
"top_p": 0.9,
|
43 |
-
"stream": True,
|
44 |
-
"threads": int(os.cpu_count() / 2),
|
45 |
-
}
|
46 |
-
|
47 |
-
llm = CTransformers(
|
48 |
-
model=llm, model_type="mistral", lib="avx2", **config # for CPU use
|
49 |
-
)
|
50 |
-
|
51 |
-
### - Local LLM settings end - ###
|
52 |
-
"""
|
53 |
-
|
54 |
-
prompt_template = """Use the following pieces of information to answer the user's question.
|
55 |
-
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
56 |
-
|
57 |
-
Context: {context}
|
58 |
-
Question: {question}
|
59 |
-
|
60 |
-
Only return the helpful answer below and nothing else.
|
61 |
-
Helpful answer:
|
62 |
-
"""
|
63 |
-
|
64 |
-
prompt = PromptTemplate(
|
65 |
-
template=prompt_template, input_variables=["context", "question"]
|
66 |
-
)
|
67 |
-
|
68 |
-
print("\n Prompt ready... \n\n")
|
69 |
-
|
70 |
-
|
71 |
-
model_name = embedding_model
|
72 |
-
model_kwargs = {"device": "cpu"}
|
73 |
-
encode_kwargs = {"normalize_embeddings": False}
|
74 |
-
embedding = HuggingFaceEmbeddings(
|
75 |
-
model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
|
76 |
-
)
|
77 |
-
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
|
78 |
-
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
79 |
-
|
80 |
-
print("\n Retrieval Ready....\n\n")
|
81 |
-
|
82 |
-
|
83 |
-
@app.get("/", response_class=HTMLResponse)
|
84 |
-
def read_item(request: Request):
|
85 |
-
return templates.TemplateResponse("index.html", {"request": request})
|
86 |
-
|
87 |
-
|
88 |
-
@app.post("/get_response")
|
89 |
-
async def get_response(query: str = Form(...)):
|
90 |
-
|
91 |
-
chain_type_kwargs = {"prompt": prompt}
|
92 |
-
qa_chain = RetrievalQA.from_chain_type(
|
93 |
-
llm=llm,
|
94 |
-
chain_type="stuff",
|
95 |
-
retriever=retriever,
|
96 |
-
return_source_documents=True,
|
97 |
-
chain_type_kwargs=chain_type_kwargs,
|
98 |
-
verbose=True,
|
99 |
-
)
|
100 |
-
response = qa_chain(query)
|
101 |
-
print(response)
|
102 |
-
answer = response["result"]
|
103 |
-
source_document = response["source_documents"][0].page_content
|
104 |
-
doc = response["source_documents"][0].metadata["source"]
|
105 |
-
response_data = jsonable_encoder(
|
106 |
-
json.dumps({"answer": answer, "source_document": source_document, "doc": doc})
|
107 |
-
)
|
108 |
-
|
109 |
-
res = Response(response_data)
|
110 |
-
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ingest(obsolete).py
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
from langchain.vectorstores import Chroma
|
2 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
-
|
4 |
-
from langchain.document_loaders import (
|
5 |
-
PyPDFLoader,
|
6 |
-
DirectoryLoader,
|
7 |
-
UnstructuredFileLoader,
|
8 |
-
)
|
9 |
-
from langchain.document_loaders.csv_loader import CSVLoader
|
10 |
-
from langchain.embeddings import (
|
11 |
-
OpenAIEmbeddings,
|
12 |
-
HuggingFaceBgeEmbeddings,
|
13 |
-
HuggingFaceEmbeddings,
|
14 |
-
HuggingFaceInstructEmbeddings,
|
15 |
-
)
|
16 |
-
|
17 |
-
|
18 |
-
persist_directory = "stores/test_512"
|
19 |
-
data = "data\czech"
|
20 |
-
chunk = 512
|
21 |
-
overlap = 128
|
22 |
-
# embedding_model = "Seznam/simcse-dist-mpnet-czeng-cs-en"
|
23 |
-
embedding_model = "Seznam/simcse-dist-mpnet-paracrawl-cs-en"
|
24 |
-
|
25 |
-
model_name = embedding_model
|
26 |
-
model_kwargs = {"device": "cpu"}
|
27 |
-
encode_kwargs = {"normalize_embeddings": False}
|
28 |
-
embedding = HuggingFaceEmbeddings(
|
29 |
-
model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
|
30 |
-
)
|
31 |
-
|
32 |
-
"""
|
33 |
-
loader = CSVLoader(
|
34 |
-
file_path="data/emails.csv",
|
35 |
-
encoding="utf-8",
|
36 |
-
csv_args={
|
37 |
-
"delimiter": ";",
|
38 |
-
},
|
39 |
-
)
|
40 |
-
|
41 |
-
"""
|
42 |
-
|
43 |
-
loader = DirectoryLoader(data, show_progress=True)
|
44 |
-
|
45 |
-
|
46 |
-
documents = loader.load()
|
47 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
48 |
-
chunk_size=chunk,
|
49 |
-
chunk_overlap=overlap,
|
50 |
-
)
|
51 |
-
texts = text_splitter.split_documents(documents)
|
52 |
-
vectordb = Chroma.from_documents(
|
53 |
-
documents=texts,
|
54 |
-
embedding=embedding,
|
55 |
-
persist_directory=persist_directory,
|
56 |
-
collection_metadata={"hnsw:space": "cosine"},
|
57 |
-
)
|
58 |
-
|
59 |
-
print("\n Vector Store Created.......\n\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ingest.py
CHANGED
@@ -90,41 +90,3 @@ class Ingest:
|
|
90 |
vectordb.save_local(self.czech_store)
|
91 |
|
92 |
print("\n Czech vector Store Created.......\n\n")
|
93 |
-
|
94 |
-
|
95 |
-
"""
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
openai_api_key = "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"
|
100 |
-
persist_directory = "stores/store_512"
|
101 |
-
data = "data/"
|
102 |
-
chunk = 512
|
103 |
-
overlap = 256
|
104 |
-
|
105 |
-
embedding = OpenAIEmbeddings(
|
106 |
-
openai_api_key=openai_api_key,
|
107 |
-
model="text-embedding-3-large",
|
108 |
-
# model_kwargs={"device": "cpu"},
|
109 |
-
)
|
110 |
-
|
111 |
-
loader = DirectoryLoader(
|
112 |
-
data, glob="**/*.pdf", show_progress=True, loader_cls=PyPDFLoader
|
113 |
-
)
|
114 |
-
documents = loader.load()
|
115 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
116 |
-
chunk_size=chunk,
|
117 |
-
chunk_overlap=overlap,
|
118 |
-
)
|
119 |
-
texts = text_splitter.split_documents(documents)
|
120 |
-
|
121 |
-
vectordb = Chroma.from_documents(
|
122 |
-
documents=texts,
|
123 |
-
embedding=embedding,
|
124 |
-
persist_directory=persist_directory,
|
125 |
-
collection_metadata={"hnsw:space": "cosine"},
|
126 |
-
)
|
127 |
-
|
128 |
-
print("\n Vector Store Created.......\n\n")
|
129 |
-
|
130 |
-
"""
|
|
|
90 |
vectordb.save_local(self.czech_store)
|
91 |
|
92 |
print("\n Czech vector Store Created.......\n\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|