Spaces:
Sleeping
Sleeping
File size: 7,801 Bytes
eee32fb 402daee 170e15c 402daee 170e15c 402daee eee32fb 402daee eee32fb 402daee 170e15c 402daee 170e15c 402daee ed737ea 402daee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# MIT License
#
# Copyright (c) 2022 Ahmet Oner & Besim Alibegovic
# Portions Copyright (c) 2024 Team Audio
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from typing import Union, Annotated
import importlib.metadata
import logging
import os
import tempfile
from celery.result import AsyncResult
from fastapi import FastAPI, File, Query, Request, UploadFile, applications
from fastapi.openapi.docs import get_swagger_ui_html
from fastapi.responses import HTMLResponse, JSONResponse, PlainTextResponse, RedirectResponse, StreamingResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from whisper import tokenizer
import aiofiles
from .util import apierror
from .worker import transcribe
logging.basicConfig(format='[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s', level=logging.INFO, force=True)
logger = logging.getLogger(__name__)
ASR_ENGINE = os.getenv("ASR_ENGINE", "faster_whisper")
ASR_OPTIONS = frozenset([
"task",
"language",
"hotwords",
"initial_prompt",
"encode",
"output",
"vad_filter",
"word_timestamps",
"model_name",
])
DEFAULT_MODEL_NAME = os.getenv("ASR_MODEL", "small")
LANGUAGE_CODES = sorted(list(tokenizer.LANGUAGES.keys()))
TASK_EXPIRATION_SECONDS = 30
projectMetadata = importlib.metadata.metadata('reaspeech')
app = FastAPI(
# docs_url=None,
# redoc_url=None,
title=projectMetadata['Name'].title().replace('-', ' '),
description=projectMetadata['Summary'],
version=projectMetadata['Version'],
contact={
"url": projectMetadata['Home-page']
},
swagger_ui_parameters={"defaultModelsExpandDepth": -1},
license_info={
"name": "MIT License",
"url": projectMetadata['License']
}
)
assets_path = os.getcwd() + "/swagger-ui-assets"
if os.path.exists(assets_path + "/swagger-ui.css") and os.path.exists(assets_path + "/swagger-ui-bundle.js"):
app.mount("/assets", StaticFiles(directory=assets_path), name="static")
def swagger_monkey_patch(*args, **kwargs):
return get_swagger_ui_html(
*args,
**kwargs,
swagger_favicon_url="",
swagger_css_url="/assets/swagger-ui.css",
swagger_js_url="/assets/swagger-ui-bundle.js",
)
applications.get_swagger_ui_html = swagger_monkey_patch
static_path = os.getcwd() + "/app/static"
app.mount("/static", StaticFiles(directory=static_path), name="static")
templates_path = os.getcwd() + "/app/templates"
templates = Jinja2Templates(directory=templates_path)
output_directory = os.environ.get("OUTPUT_DIRECTORY", os.getcwd() + "/app/output")
output_url_prefix = os.environ.get("OUTPUT_URL_PREFIX", "/output")
app.mount(output_url_prefix, StaticFiles(directory=output_directory), name="output")
@app.exception_handler(apierror.APIError)
async def api_exception_handler(request: Request, exc: apierror.APIError):
return exc.to_response()
@app.exception_handler(500)
async def internal_exception_handler(request: Request, exc: Exception):
return apierror.error_response(exc)
@app.get("/", response_class=RedirectResponse, include_in_schema=False)
async def index():
return "/reaspeech"
@app.get("/reaspeech", response_class=HTMLResponse, include_in_schema=False)
async def reaspeech(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.get("/reascript", response_class=PlainTextResponse, include_in_schema=False)
async def reascript(request: Request, name: str, host: str, protocol: str):
return templates.TemplateResponse("reascript.lua", {
"request": request,
"name": name,
"host": host,
"protocol": protocol
},
media_type='application/x-lua',
headers={
'Content-Disposition': f'attachment; filename="{name}.lua"'
}
)
@app.post("/asr", tags=["Endpoints"])
async def asr(
task: Union[str, None] = Query(default="transcribe", enum=["transcribe", "translate"]),
language: Union[str, None] = Query(default=None, enum=LANGUAGE_CODES),
hotwords: Union[str, None] = Query(default=None),
initial_prompt: Union[str, None] = Query(default=None),
audio_file: UploadFile = File(...),
encode: bool = Query(default=True, description="Encode audio first through ffmpeg"),
output: Union[str, None] = Query(default="txt", enum=["txt", "vtt", "srt", "tsv", "json"]),
vad_filter: Annotated[bool | None, Query(
description="Enable the voice activity detection (VAD) to filter out parts of the audio without speech",
include_in_schema=(True if ASR_ENGINE == "faster_whisper" else False)
)] = False,
word_timestamps: bool = Query(default=False, description="Word level timestamps"),
model_name: Union[str, None] = Query(default=None, description="Model name to use for transcription"),
use_async: bool = Query(default=False, description="Use asynchronous processing")
):
asr_options = {k: v for k, v in locals().items() if k in ASR_OPTIONS}
async_str = " (async)" if use_async else ""
logger.info(f"Transcribing{async_str} {audio_file.filename} with {asr_options}")
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file_path = temp_file.name
async with aiofiles.open(temp_file_path, 'wb') as out_file:
while content := await audio_file.read(1024 * 1024): # Read in chunks of 1MB
await out_file.write(content)
transcriber = transcribe.si(temp_file_path, audio_file.filename, asr_options)
if use_async:
job = transcriber.apply_async(expires=TASK_EXPIRATION_SECONDS)
return JSONResponse({"job_id": job.id})
else:
result = transcriber.apply().get()
def reader():
with open(result['output_path'], "r") as file:
yield from file
filename = result['output_filename']
return StreamingResponse(
reader(),
media_type="text/plain",
headers={
'Asr-Engine': ASR_ENGINE,
'Content-Disposition': f'attachment; filename="{filename}"'
})
@app.get("/jobs/{job_id}", tags=["Endpoints"])
async def job_status(job_id: str):
job = AsyncResult(job_id)
result = {
"job_id": job_id,
"job_status": job.status,
"job_result": job.result
}
if job.status == "FAILURE":
result["job_result"] = apierror.error_dict(result["job_result"])
return JSONResponse(result)
@app.delete("/jobs/{job_id}", tags=["Endpoints"])
async def revoke_job(job_id: str):
job = AsyncResult(job_id)
job.revoke(terminate=True)
result = {
"job_id": job_id,
"job_status": job.status
}
return JSONResponse(result)
|