File size: 6,455 Bytes
402daee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from typing import Union, Annotated
import importlib.metadata
import logging
import os
import tempfile

from celery.result import AsyncResult
from fastapi import FastAPI, File, Query, Request, UploadFile, applications
from fastapi.openapi.docs import get_swagger_ui_html
from fastapi.responses import HTMLResponse, JSONResponse, PlainTextResponse, RedirectResponse, StreamingResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from whisper import tokenizer
import aiofiles

from .util import apierror
from .worker import transcribe

logging.basicConfig(format='[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s', level=logging.INFO, force=True)
logger = logging.getLogger(__name__)

ASR_ENGINE = os.getenv("ASR_ENGINE", "faster_whisper")

ASR_OPTIONS = frozenset([
    "task",
    "language",
    "initial_prompt",
    "encode",
    "output",
    "vad_filter",
    "word_timestamps",
    "model_name",
])

DEFAULT_MODEL_NAME = os.getenv("ASR_MODEL", "small")

LANGUAGE_CODES = sorted(list(tokenizer.LANGUAGES.keys()))

projectMetadata = importlib.metadata.metadata('reaspeech')
app = FastAPI(
    # docs_url=None,
    # redoc_url=None,
    title=projectMetadata['Name'].title().replace('-', ' '),
    description=projectMetadata['Summary'],
    version=projectMetadata['Version'],
    contact={
        "url": projectMetadata['Home-page']
    },
    swagger_ui_parameters={"defaultModelsExpandDepth": -1},
    license_info={
        "name": "MIT License",
        "url": projectMetadata['License']
    }
)

assets_path = os.getcwd() + "/swagger-ui-assets"
if os.path.exists(assets_path + "/swagger-ui.css") and os.path.exists(assets_path + "/swagger-ui-bundle.js"):
    app.mount("/assets", StaticFiles(directory=assets_path), name="static")

    def swagger_monkey_patch(*args, **kwargs):
        return get_swagger_ui_html(
            *args,
            **kwargs,
            swagger_favicon_url="",
            swagger_css_url="/assets/swagger-ui.css",
            swagger_js_url="/assets/swagger-ui-bundle.js",
        )

    applications.get_swagger_ui_html = swagger_monkey_patch

static_path = os.getcwd() + "/app/static"
app.mount("/static", StaticFiles(directory=static_path), name="static")

templates_path = os.getcwd() + "/app/templates"
templates = Jinja2Templates(directory=templates_path)

output_directory = os.environ.get("OUTPUT_DIRECTORY", os.getcwd() + "/app/output")
output_url_prefix = os.environ.get("OUTPUT_URL_PREFIX", "/output")
app.mount(output_url_prefix, StaticFiles(directory=output_directory), name="output")

@app.exception_handler(apierror.APIError)
async def api_exception_handler(request: Request, exc: apierror.APIError):
    return exc.to_response()

@app.exception_handler(500)
async def internal_exception_handler(request: Request, exc: Exception):
    return apierror.error_response(exc)

@app.get("/", response_class=RedirectResponse, include_in_schema=False)
async def index():
    return "/reaspeech"

@app.get("/reaspeech", response_class=HTMLResponse, include_in_schema=False)
async def reaspeech(request: Request):
    return templates.TemplateResponse("index.html", {"request": request})

@app.get("/reascript", response_class=PlainTextResponse, include_in_schema=False)
async def reascript(request: Request, name: str, host: str):
    return templates.TemplateResponse("reascript.lua", {
            "request": request,
            "name": name,
            "host": host
        },
        media_type='application/x-lua',
        headers={
            'Content-Disposition': f'attachment; filename="{name}.lua"'
        }
    )

@app.post("/asr", tags=["Endpoints"])
async def asr(
    task: Union[str, None] = Query(default="transcribe", enum=["transcribe", "translate"]),
    language: Union[str, None] = Query(default=None, enum=LANGUAGE_CODES),
    initial_prompt: Union[str, None] = Query(default=None),
    audio_file: UploadFile = File(...),
    encode: bool = Query(default=True, description="Encode audio first through ffmpeg"),
    output: Union[str, None] = Query(default="txt", enum=["txt", "vtt", "srt", "tsv", "json"]),
    vad_filter: Annotated[bool | None, Query(
        description="Enable the voice activity detection (VAD) to filter out parts of the audio without speech",
        include_in_schema=(True if ASR_ENGINE == "faster_whisper" else False)
    )] = False,
    word_timestamps: bool = Query(default=False, description="Word level timestamps"),
    model_name: Union[str, None] = Query(default=None, description="Model name to use for transcription"),
    use_async: bool = Query(default=False, description="Use asynchronous processing")
):
    asr_options = {k: v for k, v in locals().items() if k in ASR_OPTIONS}
    async_str = " (async)" if use_async else ""
    logger.info(f"Transcribing{async_str} {audio_file.filename} with {asr_options}")

    with tempfile.NamedTemporaryFile(delete=False) as temp_file:
        temp_file_path = temp_file.name

    async with aiofiles.open(temp_file_path, 'wb') as out_file:
        while content := await audio_file.read(1024 * 1024):  # Read in chunks of 1MB
            await out_file.write(content)

    transcriber = transcribe.si(temp_file_path, audio_file.filename, asr_options)

    if use_async:
        job = transcriber.apply_async()
        return JSONResponse({"job_id": job.id})

    else:
        result = transcriber.apply().get()

        def reader():
            with open(result['output_path'], "r") as file:
                yield from file

        filename = result['output_filename']
        return StreamingResponse(
            reader(),
            media_type="text/plain",
            headers={
                'Asr-Engine': ASR_ENGINE,
                'Content-Disposition': f'attachment; filename="{filename}"'
            })

@app.get("/jobs/{job_id}", tags=["Endpoints"])
async def job_status(job_id: str):
    job = AsyncResult(job_id)

    result = {
        "job_id": job_id,
        "job_status": job.status,
        "job_result": job.result
    }

    if job.status == "FAILURE":
        result["job_result"] = apierror.error_dict(result["job_result"])

    return JSONResponse(result)

@app.delete("/jobs/{job_id}", tags=["Endpoints"])
async def revoke_job(job_id: str):
    job = AsyncResult(job_id)
    job.revoke(terminate=True)

    result = {
        "job_id": job_id,
        "job_status": job.status
    }
    return JSONResponse(result)