from typing import Union, Annotated import importlib.metadata import logging import os import tempfile from celery.result import AsyncResult from fastapi import FastAPI, File, Query, Request, UploadFile, applications from fastapi.openapi.docs import get_swagger_ui_html from fastapi.responses import HTMLResponse, JSONResponse, PlainTextResponse, RedirectResponse, StreamingResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from whisper import tokenizer import aiofiles from .util import apierror from .worker import transcribe logging.basicConfig(format='[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s', level=logging.INFO, force=True) logger = logging.getLogger(__name__) ASR_ENGINE = os.getenv("ASR_ENGINE", "faster_whisper") ASR_OPTIONS = frozenset([ "task", "language", "initial_prompt", "encode", "output", "vad_filter", "word_timestamps", "model_name", ]) DEFAULT_MODEL_NAME = os.getenv("ASR_MODEL", "small") LANGUAGE_CODES = sorted(list(tokenizer.LANGUAGES.keys())) projectMetadata = importlib.metadata.metadata('reaspeech') app = FastAPI( # docs_url=None, # redoc_url=None, title=projectMetadata['Name'].title().replace('-', ' '), description=projectMetadata['Summary'], version=projectMetadata['Version'], contact={ "url": projectMetadata['Home-page'] }, swagger_ui_parameters={"defaultModelsExpandDepth": -1}, license_info={ "name": "MIT License", "url": projectMetadata['License'] } ) assets_path = os.getcwd() + "/swagger-ui-assets" if os.path.exists(assets_path + "/swagger-ui.css") and os.path.exists(assets_path + "/swagger-ui-bundle.js"): app.mount("/assets", StaticFiles(directory=assets_path), name="static") def swagger_monkey_patch(*args, **kwargs): return get_swagger_ui_html( *args, **kwargs, swagger_favicon_url="", swagger_css_url="/assets/swagger-ui.css", swagger_js_url="/assets/swagger-ui-bundle.js", ) applications.get_swagger_ui_html = swagger_monkey_patch static_path = os.getcwd() + "/app/static" app.mount("/static", StaticFiles(directory=static_path), name="static") templates_path = os.getcwd() + "/app/templates" templates = Jinja2Templates(directory=templates_path) output_directory = os.environ.get("OUTPUT_DIRECTORY", os.getcwd() + "/app/output") output_url_prefix = os.environ.get("OUTPUT_URL_PREFIX", "/output") app.mount(output_url_prefix, StaticFiles(directory=output_directory), name="output") @app.exception_handler(apierror.APIError) async def api_exception_handler(request: Request, exc: apierror.APIError): return exc.to_response() @app.exception_handler(500) async def internal_exception_handler(request: Request, exc: Exception): return apierror.error_response(exc) @app.get("/", response_class=RedirectResponse, include_in_schema=False) async def index(): return "/reaspeech" @app.get("/reaspeech", response_class=HTMLResponse, include_in_schema=False) async def reaspeech(request: Request): return templates.TemplateResponse("index.html", {"request": request}) @app.get("/reascript", response_class=PlainTextResponse, include_in_schema=False) async def reascript(request: Request, name: str, host: str): return templates.TemplateResponse("reascript.lua", { "request": request, "name": name, "host": host }, media_type='application/x-lua', headers={ 'Content-Disposition': f'attachment; filename="{name}.lua"' } ) @app.post("/asr", tags=["Endpoints"]) async def asr( task: Union[str, None] = Query(default="transcribe", enum=["transcribe", "translate"]), language: Union[str, None] = Query(default=None, enum=LANGUAGE_CODES), initial_prompt: Union[str, None] = Query(default=None), audio_file: UploadFile = File(...), encode: bool = Query(default=True, description="Encode audio first through ffmpeg"), output: Union[str, None] = Query(default="txt", enum=["txt", "vtt", "srt", "tsv", "json"]), vad_filter: Annotated[bool | None, Query( description="Enable the voice activity detection (VAD) to filter out parts of the audio without speech", include_in_schema=(True if ASR_ENGINE == "faster_whisper" else False) )] = False, word_timestamps: bool = Query(default=False, description="Word level timestamps"), model_name: Union[str, None] = Query(default=None, description="Model name to use for transcription"), use_async: bool = Query(default=False, description="Use asynchronous processing") ): asr_options = {k: v for k, v in locals().items() if k in ASR_OPTIONS} async_str = " (async)" if use_async else "" logger.info(f"Transcribing{async_str} {audio_file.filename} with {asr_options}") with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file_path = temp_file.name async with aiofiles.open(temp_file_path, 'wb') as out_file: while content := await audio_file.read(1024 * 1024): # Read in chunks of 1MB await out_file.write(content) transcriber = transcribe.si(temp_file_path, audio_file.filename, asr_options) if use_async: job = transcriber.apply_async() return JSONResponse({"job_id": job.id}) else: result = transcriber.apply().get() def reader(): with open(result['output_path'], "r") as file: yield from file filename = result['output_filename'] return StreamingResponse( reader(), media_type="text/plain", headers={ 'Asr-Engine': ASR_ENGINE, 'Content-Disposition': f'attachment; filename="{filename}"' }) @app.get("/jobs/{job_id}", tags=["Endpoints"]) async def job_status(job_id: str): job = AsyncResult(job_id) result = { "job_id": job_id, "job_status": job.status, "job_result": job.result } if job.status == "FAILURE": result["job_result"] = apierror.error_dict(result["job_result"]) return JSONResponse(result) @app.delete("/jobs/{job_id}", tags=["Endpoints"]) async def revoke_job(job_id: str): job = AsyncResult(job_id) job.revoke(terminate=True) result = { "job_id": job_id, "job_status": job.status } return JSONResponse(result)