Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- HF Deploy.ipynb +159 -0
- requirements.txt +7 -0
HF Deploy.ipynb
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 6,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"Note: you may need to restart the kernel to use updated packages.\n",
|
13 |
+
"Created 915 chunks from 2 PDF files\n",
|
14 |
+
"Query: What are the key principles of the AI Bill of Rights?\n",
|
15 |
+
"\n",
|
16 |
+
"Response:\n",
|
17 |
+
"The key principles of the AI Bill of Rights are civil rights, civil liberties, and privacy.\n",
|
18 |
+
"\n",
|
19 |
+
"Context used:\n",
|
20 |
+
"1. use, and deployment of automated systems to protect the rights of the American public in the age of ...\n",
|
21 |
+
"2. civil rights, civil liberties, and privacy. The Blueprint for an AI Bill of Rights includes this For...\n"
|
22 |
+
]
|
23 |
+
}
|
24 |
+
],
|
25 |
+
"source": [
|
26 |
+
"# Cell 1: Install required packages\n",
|
27 |
+
"%pip install langchain openai chromadb PyPDF2 tiktoken -qU\n",
|
28 |
+
"\n",
|
29 |
+
"# Cell 2: Import necessary modules\n",
|
30 |
+
"import os\n",
|
31 |
+
"import tempfile\n",
|
32 |
+
"import aiohttp\n",
|
33 |
+
"import asyncio\n",
|
34 |
+
"import getpass\n",
|
35 |
+
"from io import BytesIO\n",
|
36 |
+
"from typing import List\n",
|
37 |
+
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
38 |
+
"from langchain.document_loaders import PyPDFLoader\n",
|
39 |
+
"from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate\n",
|
40 |
+
"from langchain.vectorstores import Chroma\n",
|
41 |
+
"from langchain.embeddings import OpenAIEmbeddings\n",
|
42 |
+
"from langchain.chat_models import ChatOpenAI\n",
|
43 |
+
"from PyPDF2 import PdfReader\n",
|
44 |
+
"\n",
|
45 |
+
"\n",
|
46 |
+
"# Cell 4: Set up prompts\n",
|
47 |
+
"system_template = \"Use the following context to answer a user's question. If you cannot find the answer in the context, say you don't know the answer.\"\n",
|
48 |
+
"system_role_prompt = SystemMessagePromptTemplate.from_template(system_template)\n",
|
49 |
+
"\n",
|
50 |
+
"user_prompt_template = \"Context:\\n{context}\\n\\nQuestion:\\n{question}\"\n",
|
51 |
+
"user_role_prompt = HumanMessagePromptTemplate.from_template(user_prompt_template)\n",
|
52 |
+
"\n",
|
53 |
+
"# Cell 5: Define RetrievalAugmentedQAPipeline class\n",
|
54 |
+
"class RetrievalAugmentedQAPipeline:\n",
|
55 |
+
" def __init__(self, llm: ChatOpenAI, vector_db: Chroma) -> None:\n",
|
56 |
+
" self.llm = llm\n",
|
57 |
+
" self.vector_db = vector_db\n",
|
58 |
+
"\n",
|
59 |
+
" async def arun_pipeline(self, user_query: str):\n",
|
60 |
+
" context_docs = self.vector_db.similarity_search(user_query, k=2) # Reduced from 4 to 2\n",
|
61 |
+
" context_list = [doc.page_content for doc in context_docs]\n",
|
62 |
+
" context_prompt = \"\\n\".join(context_list)\n",
|
63 |
+
" \n",
|
64 |
+
" # Implement a simple truncation to ensure we don't exceed token limit\n",
|
65 |
+
" max_context_length = 12000 # Adjust this value as needed\n",
|
66 |
+
" if len(context_prompt) > max_context_length:\n",
|
67 |
+
" context_prompt = context_prompt[:max_context_length]\n",
|
68 |
+
" \n",
|
69 |
+
" formatted_system_prompt = system_role_prompt.format()\n",
|
70 |
+
" formatted_user_prompt = user_role_prompt.format(question=user_query, context=context_prompt)\n",
|
71 |
+
"\n",
|
72 |
+
" async def generate_response():\n",
|
73 |
+
" async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):\n",
|
74 |
+
" yield chunk.content\n",
|
75 |
+
"\n",
|
76 |
+
" return {\"response\": generate_response(), \"context\": context_list}\n",
|
77 |
+
"\n",
|
78 |
+
"# Cell 6: PDF processing functions\n",
|
79 |
+
"async def fetch_pdf(session, url):\n",
|
80 |
+
" async with session.get(url) as response:\n",
|
81 |
+
" if response.status == 200:\n",
|
82 |
+
" return await response.read()\n",
|
83 |
+
" else:\n",
|
84 |
+
" print(f\"Failed to fetch PDF from {url}\")\n",
|
85 |
+
" return None\n",
|
86 |
+
"\n",
|
87 |
+
"async def process_pdf(pdf_content):\n",
|
88 |
+
" pdf_reader = PdfReader(BytesIO(pdf_content))\n",
|
89 |
+
" text = \"\\n\".join([page.extract_text() for page in pdf_reader.pages])\n",
|
90 |
+
" text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=40)\n",
|
91 |
+
" return text_splitter.split_text(text)\n",
|
92 |
+
"\n",
|
93 |
+
"# Cell 7: Main execution\n",
|
94 |
+
"async def main():\n",
|
95 |
+
" # Ensure API key is set\n",
|
96 |
+
" api_key = get_openai_api_key()\n",
|
97 |
+
"\n",
|
98 |
+
" # List of PDF URLs\n",
|
99 |
+
" pdf_urls = [\n",
|
100 |
+
" \"https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf\",\n",
|
101 |
+
" \"https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf\",\n",
|
102 |
+
" ]\n",
|
103 |
+
"\n",
|
104 |
+
" all_chunks = []\n",
|
105 |
+
" async with aiohttp.ClientSession() as session:\n",
|
106 |
+
" pdf_contents = await asyncio.gather(*[fetch_pdf(session, url) for url in pdf_urls])\n",
|
107 |
+
" \n",
|
108 |
+
" for pdf_content in pdf_contents:\n",
|
109 |
+
" if pdf_content:\n",
|
110 |
+
" chunks = await process_pdf(pdf_content)\n",
|
111 |
+
" all_chunks.extend(chunks)\n",
|
112 |
+
"\n",
|
113 |
+
" print(f\"Created {len(all_chunks)} chunks from {len(pdf_urls)} PDF files\")\n",
|
114 |
+
"\n",
|
115 |
+
" embeddings = OpenAIEmbeddings(openai_api_key=api_key)\n",
|
116 |
+
" vector_db = Chroma.from_texts(all_chunks, embeddings)\n",
|
117 |
+
" \n",
|
118 |
+
" chat_openai = ChatOpenAI(openai_api_key=api_key)\n",
|
119 |
+
" retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(vector_db=vector_db, llm=chat_openai)\n",
|
120 |
+
" \n",
|
121 |
+
" # Example query\n",
|
122 |
+
" query = \"What are the key principles of the AI Bill of Rights?\"\n",
|
123 |
+
" result = await retrieval_augmented_qa_pipeline.arun_pipeline(query)\n",
|
124 |
+
" \n",
|
125 |
+
" print(\"Query:\", query)\n",
|
126 |
+
" print(\"\\nResponse:\")\n",
|
127 |
+
" async for chunk in result[\"response\"]:\n",
|
128 |
+
" print(chunk, end=\"\")\n",
|
129 |
+
" print(\"\\n\\nContext used:\")\n",
|
130 |
+
" for i, context in enumerate(result[\"context\"], 1):\n",
|
131 |
+
" print(f\"{i}. {context[:100]}...\")\n",
|
132 |
+
"\n",
|
133 |
+
"# Cell 8: Run the main function\n",
|
134 |
+
"await main()"
|
135 |
+
]
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"metadata": {
|
139 |
+
"kernelspec": {
|
140 |
+
"display_name": "base",
|
141 |
+
"language": "python",
|
142 |
+
"name": "python3"
|
143 |
+
},
|
144 |
+
"language_info": {
|
145 |
+
"codemirror_mode": {
|
146 |
+
"name": "ipython",
|
147 |
+
"version": 3
|
148 |
+
},
|
149 |
+
"file_extension": ".py",
|
150 |
+
"mimetype": "text/x-python",
|
151 |
+
"name": "python",
|
152 |
+
"nbconvert_exporter": "python",
|
153 |
+
"pygments_lexer": "ipython3",
|
154 |
+
"version": "3.10.14"
|
155 |
+
}
|
156 |
+
},
|
157 |
+
"nbformat": 4,
|
158 |
+
"nbformat_minor": 2
|
159 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain
|
3 |
+
openai
|
4 |
+
chromadb
|
5 |
+
PyPDF2
|
6 |
+
tiktoken
|
7 |
+
aiohttp
|