Spaces:
Sleeping
Sleeping
File size: 4,743 Bytes
c8612a0 234eac0 c8612a0 234eac0 195e6d9 234eac0 c8612a0 195e6d9 234eac0 c8612a0 234eac0 c8612a0 234eac0 195e6d9 234eac0 195e6d9 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 195e6d9 234eac0 c8612a0 234eac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import os, tempfile
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
from aimakerspace.openai_utils.prompts import UserRolePrompt, SystemRolePrompt
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
from aimakerspace.openai_utils.embedding import EmbeddingModel
import chainlit as cl
from PyPDF2 import PdfReader
from qdrant_client import QdrantClient
from qdrant_client.http import models
system_template = "Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."
system_role_prompt = SystemRolePrompt(system_template)
user_prompt_template = "Context:\n{context}\n\nQuestion:\n{question}"
user_role_prompt = UserRolePrompt(user_prompt_template)
class QdrantVectorStore:
def __init__(self, collection_name="my_collection"):
self.client = QdrantClient(":memory:")
self.collection_name = collection_name
self.embedding_model = EmbeddingModel()
async def abuild_from_list(self, texts: List[str]):
self.client.recreate_collection(
collection_name=self.collection_name,
vectors_config=models.VectorParams(size=1536, distance=models.Distance.COSINE),
)
for i, text in enumerate(texts):
vector = await self.embedding_model.aembed_query(text)
self.client.upsert(
collection_name=self.collection_name,
points=[models.PointStruct(id=i, vector=vector, payload={"text": text})]
)
return self
def search_by_text(self, query: str, k: int = 4):
vector = self.embedding_model.embed_query(query)
results = self.client.search(
collection_name=self.collection_name,
query_vector=vector,
limit=k
)
return [(hit.payload["text"], hit.score) for hit in results]
class RetrievalAugmentedQAPipeline:
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: QdrantVectorStore) -> None:
self.llm = llm
self.vector_db_retriever = vector_db_retriever
async def arun_pipeline(self, user_query: str):
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
context_prompt = "\n".join([context[0] for context in context_list])
formatted_system_prompt = system_role_prompt.create_message()
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
async def generate_response():
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
yield chunk
return {"response": generate_response(), "context": context_list}
text_splitter = CharacterTextSplitter()
def process_file(file: AskFileResponse):
with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=file.name) as temp_file:
temp_file.write(file.content)
temp_file_path = temp_file.name
if file.type == "text/plain":
text_loader = TextFileLoader(temp_file_path)
documents = text_loader.load_documents()
elif file.type == "application/pdf":
pdf_reader = PdfReader(temp_file_path)
documents = [page.extract_text() for page in pdf_reader.pages]
else:
raise ValueError(f"Unsupported file type: {file.type}")
texts = text_splitter.split_texts(documents)
os.unlink(temp_file_path)
return texts
@cl.on_chat_start
async def on_chat_start():
files = None
while files == None:
files = await cl.AskFileMessage(
content="Please upload a Text or PDF file to begin!",
accept=["text/plain", "application/pdf"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(content=f"Processing `{file.name}`...", disable_human_feedback=True)
await msg.send()
texts = process_file(file)
print(f"Processing {len(texts)} text chunks")
vector_db = QdrantVectorStore()
vector_db = await vector_db.abuild_from_list(texts)
chat_openai = ChatOpenAI()
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(vector_db_retriever=vector_db, llm=chat_openai)
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
msg = cl.Message(content="")
result = await chain.arun_pipeline(message.content)
async for stream_resp in result["response"]:
await msg.stream_token(stream_resp)
await msg.send() |