Spaces:
Sleeping
Sleeping
File size: 3,529 Bytes
c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os, tempfile
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
from aimakerspace.openai_utils.prompts import UserRolePrompt, SystemRolePrompt
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
from PyPDF2 import PdfReader
system_template = "Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."
system_role_prompt = SystemRolePrompt(system_template)
user_prompt_template = "Context:\n{context}\n\nQuestion:\n{question}"
user_role_prompt = UserRolePrompt(user_prompt_template)
class RetrievalAugmentedQAPipeline:
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
self.llm = llm
self.vector_db_retriever = vector_db_retriever
async def arun_pipeline(self, user_query: str):
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
context_prompt = "\n".join([context[0] for context in context_list])
formatted_system_prompt = system_role_prompt.create_message()
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
async def generate_response():
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
yield chunk
return {"response": generate_response(), "context": context_list}
text_splitter = CharacterTextSplitter()
def process_file(file: AskFileResponse):
with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=file.name) as temp_file:
temp_file.write(file.content)
temp_file_path = temp_file.name
if file.type == "text/plain":
text_loader = TextFileLoader(temp_file_path)
documents = text_loader.load_documents()
elif file.type == "application/pdf":
pdf_reader = PdfReader(temp_file_path)
documents = [page.extract_text() for page in pdf_reader.pages]
else:
raise ValueError(f"Unsupported file type: {file.type}")
texts = text_splitter.split_texts(documents)
os.unlink(temp_file_path)
return texts
@cl.on_chat_start
async def on_chat_start():
files = None
while files == None:
files = await cl.AskFileMessage(
content="Please upload a Text or PDF file to begin!",
accept=["text/plain", "application/pdf"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(content=f"Processing `{file.name}`...", disable_human_feedback=True)
await msg.send()
texts = process_file(file)
print(f"Processing {len(texts)} text chunks")
vector_db = VectorDatabase()
vector_db = await vector_db.abuild_from_list(texts)
chat_openai = ChatOpenAI()
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(vector_db_retriever=vector_db, llm=chat_openai)
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
msg = cl.Message(content="")
result = await chain.arun_pipeline(message.content)
async for stream_resp in result["response"]:
await msg.stream_token(stream_resp)
await msg.send() |