Spaces:
Sleeping
Sleeping
File size: 3,535 Bytes
e5aa264 234eac0 c8612a0 e5aa264 234eac0 c8612a0 234eac0 c8612a0 234eac0 e5aa264 c8612a0 234eac0 e5aa264 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 c8612a0 234eac0 e5aa264 234eac0 c8612a0 234eac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import os
import tempfile
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
from aimakerspace.openai_utils.prompts import UserRolePrompt, SystemRolePrompt
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
from PyPDF2 import PdfReader
system_template = "Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."
system_role_prompt = SystemRolePrompt(system_template)
user_prompt_template = "Context:\n{context}\n\nQuestion:\n{question}"
user_role_prompt = UserRolePrompt(user_prompt_template)
class RetrievalAugmentedQAPipeline:
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
self.llm = llm
self.vector_db_retriever = vector_db_retriever
async def arun_pipeline(self, user_query: str):
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
context_prompt = "\n".join([context[0] for context in context_list])
formatted_system_prompt = system_role_prompt.create_message()
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
async def generate_response():
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
yield chunk
return {"response": generate_response(), "context": context_list}
text_splitter = CharacterTextSplitter()
def process_file(file: AskFileResponse):
with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=file.name) as temp_file:
temp_file.write(file.content)
temp_file_path = temp_file.name
if file.type == "text/plain":
text_loader = TextFileLoader(temp_file_path)
documents = text_loader.load_documents()
elif file.type == "application/pdf":
pdf_reader = PdfReader(temp_file_path)
documents = [page.extract_text() for page in pdf_reader.pages]
else:
raise ValueError(f"Unsupported file type: {file.type}")
texts = text_splitter.split_texts(documents)
os.unlink(temp_file_path)
return texts
@cl.on_chat_start
async def on_chat_start():
files = None
while files == None:
files = await cl.AskFileMessage(
content="Please upload a Text or PDF file to begin!",
accept=["text/plain", "application/pdf"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(content=f"Processing `{file.name}`...", disable_human_feedback=True)
await msg.send()
texts = process_file(file)
print(f"Processing {len(texts)} text chunks")
vector_db = VectorDatabase()
vector_db = await vector_db.abuild_from_list(texts)
chat_openai = ChatOpenAI()
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(vector_db_retriever=vector_db, llm=chat_openai)
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
msg = cl.Message(content="")
result = await chain.arun_pipeline(message.content)
async for stream_resp in result["response"]:
await msg.stream_token(stream_resp)
await msg.send() |