Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ from langchain_core.runnables import RunnablePassthrough
|
|
10 |
from qdrant_client import QdrantClient
|
11 |
from qdrant_client.http.models import Distance, VectorParams
|
12 |
from operator import itemgetter
|
|
|
13 |
|
14 |
from sentence_transformers import SentenceTransformer
|
15 |
|
@@ -44,21 +45,26 @@ def load_and_process_pdfs(pdf_links):
|
|
44 |
def setup_vectorstore():
|
45 |
LOCATION = ":memory:"
|
46 |
COLLECTION_NAME = "AI_Ethics_Framework"
|
47 |
-
|
48 |
-
|
49 |
qdrant_client = QdrantClient(location=LOCATION)
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# Create the collection
|
52 |
qdrant_client.create_collection(
|
53 |
collection_name=COLLECTION_NAME,
|
54 |
vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE),
|
55 |
)
|
56 |
|
57 |
-
# Create the vector store
|
58 |
qdrant_vector_store = QdrantVectorStore(
|
59 |
client=qdrant_client,
|
60 |
collection_name=COLLECTION_NAME,
|
61 |
-
embedding=
|
62 |
)
|
63 |
|
64 |
# Load and add documents
|
|
|
10 |
from qdrant_client import QdrantClient
|
11 |
from qdrant_client.http.models import Distance, VectorParams
|
12 |
from operator import itemgetter
|
13 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings # Add this line
|
14 |
|
15 |
from sentence_transformers import SentenceTransformer
|
16 |
|
|
|
45 |
def setup_vectorstore():
|
46 |
LOCATION = ":memory:"
|
47 |
COLLECTION_NAME = "AI_Ethics_Framework"
|
48 |
+
|
|
|
49 |
qdrant_client = QdrantClient(location=LOCATION)
|
50 |
|
51 |
+
# Use your SentenceTransformer model for embeddings
|
52 |
+
embeddings = HuggingFaceEmbeddings(model_name="Technocoloredgeek/midterm-finetuned-embedding")
|
53 |
+
|
54 |
+
# Get the vector size from the embeddings
|
55 |
+
VECTOR_SIZE = len(embeddings.embed_query("test"))
|
56 |
+
|
57 |
# Create the collection
|
58 |
qdrant_client.create_collection(
|
59 |
collection_name=COLLECTION_NAME,
|
60 |
vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE),
|
61 |
)
|
62 |
|
63 |
+
# Create the vector store with the new embeddings
|
64 |
qdrant_vector_store = QdrantVectorStore(
|
65 |
client=qdrant_client,
|
66 |
collection_name=COLLECTION_NAME,
|
67 |
+
embedding=embeddings
|
68 |
)
|
69 |
|
70 |
# Load and add documents
|