Technozam commited on
Commit
8aa898f
·
1 Parent(s): f5eaadb

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +310 -0
app.py ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """True-FalseGenerator.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1unGjdSsz_ay3oVQyYChtJUQXcgXc0VO8
8
+ """
9
+
10
+ from textwrap3 import wrap
11
+
12
+ text = """A Lion lay asleep in the forest, his great head resting on his paws. A timid little Mouse came upon him unexpectedly, and in her fright and haste to
13
+ get away, ran across the Lion's nose. Roused from his nap, the Lion laid his huge paw angrily on the tiny creature to kill her. "Spare me!" begged
14
+ the poor Mouse. "Please let me go and some day I will surely repay you." The Lion was much amused to think that a Mouse could ever help him. But he
15
+ was generous and finally let the Mouse go. Some days later, while stalking his prey in the forest, the Lion was caught in the toils of a hunter's
16
+ net. Unable to free himself, he filled the forest with his angry roaring. The Mouse knew the voice and quickly found the Lion struggling in the net.
17
+ Running to one of the great ropes that bound him, she gnawed it until it parted, and soon the Lion was free. "You laughed when I said I would repay
18
+ you," said the Mouse. "Now you see that even a Mouse can help a Lion." """
19
+ for wrp in wrap(text, 150):
20
+ print (wrp)
21
+ print ("\n")
22
+
23
+ import torch
24
+ from transformers import T5ForConditionalGeneration,T5Tokenizer
25
+ summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')
26
+ summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')
27
+
28
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
29
+ summary_model = summary_model.to(device)
30
+
31
+ import random
32
+ import numpy as np
33
+
34
+ def set_seed(seed: int):
35
+ random.seed(seed)
36
+ np.random.seed(seed)
37
+ torch.manual_seed(seed)
38
+ torch.cuda.manual_seed_all(seed)
39
+
40
+ set_seed(42)
41
+
42
+ import nltk
43
+ from nltk.corpus import wordnet as wn
44
+ from nltk.tokenize import sent_tokenize
45
+
46
+ def postprocesstext (content):
47
+ final=""
48
+ for sent in sent_tokenize(content):
49
+ sent = sent.capitalize()
50
+ final = final +" "+sent
51
+ return final
52
+
53
+
54
+ def summarizer(text,model,tokenizer):
55
+ text = text.strip().replace("\n"," ")
56
+ text = "summarize: "+text
57
+ # print (text)
58
+ max_len = 512
59
+ encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
60
+
61
+ input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
62
+
63
+ outs = model.generate(input_ids=input_ids,
64
+ attention_mask=attention_mask,
65
+ early_stopping=True,
66
+ num_beams=3,
67
+ num_return_sequences=1,
68
+ no_repeat_ngram_size=2,
69
+ min_length = 75,
70
+ max_length=300)
71
+
72
+
73
+ dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
74
+ summary = dec[0]
75
+ summary = postprocesstext(summary)
76
+ summary= summary.strip()
77
+
78
+ return summary
79
+
80
+
81
+ summarized_text = summarizer(text,summary_model,summary_tokenizer)
82
+
83
+ total = 10
84
+
85
+ """# **Answer Span Extraction (Keywords and Noun Phrases)**"""
86
+
87
+ import nltk
88
+ nltk.download('stopwords')
89
+ from nltk.corpus import stopwords
90
+ import string
91
+ import pke
92
+ import traceback
93
+
94
+
95
+ def get_nouns_multipartite(content):
96
+ out=[]
97
+ try:
98
+ # extractor = spacy.load("en_core_web_sm")
99
+ extractor = pke.unsupervised.MultipartiteRank()
100
+
101
+ extractor.load_document(input=content,language='en')
102
+
103
+
104
+ # not contain punctuation marks or stopwords as candidates.
105
+ pos = {'PROPN','NOUN'}
106
+ #pos = {'PROPN','NOUN'}
107
+ stoplist = list(string.punctuation)
108
+ stoplist += ['-lrb-', '-rrb-', '-lcb-', '-rcb-', '-lsb-', '-rsb-']
109
+ stoplist += stopwords.words('english')
110
+ # extractor.candidate_selection(pos=pos, stoplist=stoplist)
111
+ extractor.candidate_selection(pos=pos)
112
+ # 4. build the Multipartite graph and rank candidates using random walk,
113
+ # alpha controls the weight adjustment mechanism, see TopicRank for
114
+ # threshold/method parameters.
115
+ extractor.candidate_weighting(alpha=1.1,
116
+ threshold=0.75,
117
+ method='average')
118
+ keyphrases = extractor.get_n_best(n=15)
119
+
120
+
121
+ for val in keyphrases:
122
+ out.append(val[0])
123
+ except:
124
+ out = []
125
+ traceback.print_exc()
126
+
127
+ return out
128
+
129
+ from flashtext import KeywordProcessor
130
+
131
+ def get_keywords(originaltext,summarytext,total):
132
+ keywords = get_nouns_multipartite(originaltext)
133
+ print ("keywords unsummarized: ",keywords)
134
+ keyword_processor = KeywordProcessor()
135
+ for keyword in keywords:
136
+ keyword_processor.add_keyword(keyword)
137
+
138
+ keywords_found = keyword_processor.extract_keywords(summarytext)
139
+ keywords_found = list(set(keywords_found))
140
+ print ("keywords_found in summarized: ",keywords_found)
141
+
142
+ important_keywords =[]
143
+ for keyword in keywords:
144
+ if keyword in keywords_found:
145
+ important_keywords.append(keyword)
146
+
147
+ return important_keywords[:total]
148
+
149
+
150
+ imp_keywords = get_keywords(text,summarized_text,total)
151
+ print (imp_keywords)
152
+
153
+ """# **Question generation using T5**"""
154
+
155
+ question_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_boolean_questions')
156
+ question_tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_boolean_questions')
157
+ question_model = question_model.to(device)
158
+
159
+ def get_question(context,answer,model,tokenizer):
160
+ text = "context: {} answer: {}".format(context,answer)
161
+ encoding = tokenizer.encode_plus(text,max_length=384, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
162
+ input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
163
+
164
+ outs = model.generate(input_ids=input_ids,
165
+ attention_mask=attention_mask,
166
+ early_stopping=True,
167
+ num_beams=5,
168
+ num_return_sequences=1,
169
+ no_repeat_ngram_size=2,
170
+ max_length=72)
171
+
172
+
173
+ dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
174
+
175
+
176
+ Question = dec[0].replace("question:","")
177
+ Question= Question.strip()
178
+ return Question
179
+
180
+ """# **UI by using Gradio**"""
181
+
182
+ import mysql.connector
183
+ import datetime;
184
+
185
+ mydb = mysql.connector.connect(
186
+ host="qtechdb-1.cexugk1h8rui.ap-northeast-1.rds.amazonaws.com",
187
+ user="admin",
188
+ password="F3v2vGWzb8vaniE3nqzi",
189
+ database="spring_social"
190
+ )
191
+
192
+ import gradio as gr
193
+
194
+ context = gr.Textbox(lines=10, placeholder="Enter paragraph/content here...", label="Text")
195
+ total = gr.Slider(1,10, value=1,step=1, label="Total Number Of Questions")
196
+ subject = gr.Textbox(placeholder="Enter subject/title here...", label="Text")
197
+
198
+
199
+ output = gr.Markdown( label="Question and Answers")
200
+
201
+
202
+ def generate_question_text(context,subject,total):
203
+ summary_text = summarizer(context,summary_model,summary_tokenizer)
204
+ for wrp in wrap(summary_text, 150):
205
+ print (wrp)
206
+ np = get_keywords(context,summary_text,total)
207
+ print ("\n\nNoun phrases",np)
208
+ output="<b style='color:black;'>Answer the following true/false questions. Select the correct answer.</b><br><br>"
209
+
210
+ i=1
211
+ for answer in np:
212
+ ques = get_question(summary_text,answer,question_model,question_tokenizer)
213
+ # output= output + ques + "\n" + "Ans: "+answer.capitalize() + "\n\n"
214
+ output = output + "<b style='color:black;'>Q"+ str(i) + ") " + ques + "</b> <br>"
215
+ # output = output + "<br>"
216
+ output = output + "<b>" + "a) True <br></b>"
217
+ output = output + "<b>" + "b) False </b>"
218
+
219
+ output = output + "<br>"
220
+ i += 1
221
+
222
+ mycursor = mydb.cursor()
223
+ timedate = datetime.datetime.now()
224
+
225
+ sql = "INSERT INTO truetexts (subject, input, output, timedate) VALUES (%s,%s, %s,%s)"
226
+ val = (subject, context, output, timedate)
227
+ mycursor.execute(sql, val)
228
+
229
+ mydb.commit()
230
+
231
+ print(mycursor.rowcount, "record inserted.")
232
+ return output
233
+
234
+ iface = gr.Interface(
235
+ fn=generate_question_text,
236
+ inputs=[context,subject, total],
237
+ outputs=output,
238
+ css=".gradio-container {background-image: url('file=blue.jpg')}",
239
+ allow_flagging="manual",flagging_options=["Save Data"])
240
+
241
+ # iface.launch(debug=True, share=True)
242
+
243
+ def generate_question(context,subject,total):
244
+ summary_text = summarizer(context,summary_model,summary_tokenizer)
245
+ for wrp in wrap(summary_text, 150):
246
+ print (wrp)
247
+ np = get_keywords(context,summary_text,total)
248
+ print ("\n\nNoun phrases",np)
249
+ output="<b style='color:black;'>Answer the following true/false questions. Select the correct answer.</b><br><br>"
250
+
251
+ i=1
252
+ for answer in np:
253
+ ques = get_question(summary_text,answer,question_model,question_tokenizer)
254
+ # output= output + ques + "\n" + "Ans: "+answer.capitalize() + "\n\n"
255
+ output = output + "<b style='color:black;'>Q"+ str(i) + ") " + ques + "</b> <br>"
256
+ # output = output + "<br>"
257
+ output = output + "<b>" + "a) True <br></b>"
258
+ output = output + "<b>" + "b) False </b>"
259
+
260
+ output = output + "<br>"
261
+ i += 1
262
+
263
+ return output
264
+
265
+ import glob
266
+ import os.path
267
+ import pandas as pd
268
+
269
+ file =None
270
+
271
+ def filecreate(x,subject,total):
272
+
273
+ with open(x.name) as fo:
274
+ text = fo.read()
275
+ # print(text)
276
+ generated = generate_question(text,subject, total)
277
+
278
+ mycursor = mydb.cursor()
279
+
280
+ timedate= datetime.datetime.now()
281
+
282
+ sql = "INSERT INTO truefiles (subject, input, output, timedate) VALUES (%s,%s, %s,%s)"
283
+ val = (subject, text, generated, timedate)
284
+ mycursor.execute(sql, val)
285
+
286
+ mydb.commit()
287
+
288
+ print(mycursor.rowcount, "record inserted.")
289
+
290
+ # return text
291
+ return generated
292
+
293
+ import gradio as gr
294
+
295
+ context = gr.HTML(label="Text")
296
+ file = gr.File()
297
+ total = gr.Slider(1,10, value=1,step=1, label="Total Number Of Questions")
298
+ subject = gr.Textbox(placeholder="Enter subject/title here...", label="Text")
299
+
300
+ fface = gr.Interface(
301
+ fn=filecreate,
302
+ inputs=[file,subject,total],
303
+ outputs=context,
304
+ css=".gradio-container {background-image: url('file=blue.jpg')}",
305
+ allow_flagging="manual",flagging_options=["Save Data"])
306
+
307
+ # fface.launch(debug=True, share=True)
308
+
309
+ demo = gr.TabbedInterface([iface, fface], ["Text", "Upload File"], css=".gradio-container {background-image: url('file=blue.jpg')}")
310
+ demo.launch(debug=True, share=True)