from transformers import AutoTokenizer, AutoModelForSequenceClassification from datasets import load_dataset import streamlit as st import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, r2_score import altair as alt import time import zipfile import fitz # Page title st.set_page_config(page_title='ML Model Building', page_icon='🤖') st.title('🤖 ML Model Building') with st.expander('About this app'): st.markdown('**What can this app do?**') st.info('This app allow users to build a machine learning (ML) model in an end-to-end workflow. Particularly, this encompasses data upload, data pre-processing, ML model building and post-model analysis.') st.markdown('**How to use the app?**') st.warning('To engage with the app, go to the sidebar and 1. Select a data set and 2. Adjust the model parameters by adjusting the various slider widgets. As a result, this would initiate the ML model building process, display the model results as well as allowing users to download the generated models and accompanying data.') st.markdown('**Under the hood**') st.markdown('Data sets:') st.code('''- Drug solubility data set ''', language='markdown') st.markdown('Libraries used:') st.code('''- Pandas for data wrangling - Scikit-learn for building a machine learning model - Altair for chart creation - Streamlit for user interface ''', language='markdown') # Sidebar for accepting input parameters with st.sidebar: # Load data st.header('1.1. Input data') st.markdown('**1. Use custom data**') uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"]) if uploaded_file is not None: df = pd.read_csv(uploaded_file, index_col=False) # Download example data @st.cache_data def convert_df(input_df): return input_df.to_csv(index=False).encode('utf-8') example_csv = pd.read_csv('https://raw.githubusercontent.com/dataprofessor/data/master/delaney_solubility_with_descriptors.csv') csv = convert_df(example_csv) st.download_button( label="Download example CSV", data=csv, file_name='delaney_solubility_with_descriptors.csv', mime='text/csv', ) # Select example data st.markdown('**1.2. Use example data**') example_data = st.toggle('Load example data') if example_data: df = pd.read_csv('https://raw.githubusercontent.com/dataprofessor/data/master/delaney_solubility_with_descriptors.csv') st.header('2. Set Parameters') parameter_split_size = st.slider('Data split ratio (% for Training Set)', 10, 90, 80, 5) st.subheader('2.1. Learning Parameters') with st.expander('See parameters'): parameter_n_estimators = st.slider('Number of estimators (n_estimators)', 0, 1000, 100, 100) parameter_max_features = st.select_slider('Max features (max_features)', options=['all', 'sqrt', 'log2']) parameter_min_samples_split = st.slider('Minimum number of samples required to split an internal node (min_samples_split)', 2, 10, 2, 1) parameter_min_samples_leaf = st.slider('Minimum number of samples required to be at a leaf node (min_samples_leaf)', 1, 10, 2, 1) st.subheader('2.2. General Parameters') with st.expander('See parameters', expanded=False): parameter_random_state = st.slider('Seed number (random_state)', 0, 1000, 42, 1) parameter_criterion = st.select_slider('Performance measure (criterion)', options=['squared_error', 'absolute_error', 'friedman_mse']) parameter_bootstrap = st.select_slider('Bootstrap samples when building trees (bootstrap)', options=[True, False]) parameter_oob_score = st.select_slider('Whether to use out-of-bag samples to estimate the R^2 on unseen data (oob_score)', options=[False, True]) sleep_time = st.slider('Sleep time', 0, 3, 0) # Initiate the model building process if uploaded_file or example_data: with st.status("Running ...", expanded=True) as status: st.write("Loading data ...") time.sleep(sleep_time) st.write("Preparing data ...") time.sleep(sleep_time) X = df.iloc[:,:-1] y = df.iloc[:,-1] st.write("Splitting data ...") time.sleep(sleep_time) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=(100-parameter_split_size)/100, random_state=parameter_random_state) st.write("Model training ...") time.sleep(sleep_time) if parameter_max_features == 'all': parameter_max_features = None parameter_max_features_metric = X.shape[1] rf = RandomForestRegressor( n_estimators=parameter_n_estimators, max_features=parameter_max_features, min_samples_split=parameter_min_samples_split, min_samples_leaf=parameter_min_samples_leaf, random_state=parameter_random_state, criterion=parameter_criterion, bootstrap=parameter_bootstrap, oob_score=parameter_oob_score) rf.fit(X_train, y_train) st.write("Applying model to make predictions ...") time.sleep(sleep_time) y_train_pred = rf.predict(X_train) y_test_pred = rf.predict(X_test) st.write("Evaluating performance metrics ...") time.sleep(sleep_time) train_mse = mean_squared_error(y_train, y_train_pred) train_r2 = r2_score(y_train, y_train_pred) test_mse = mean_squared_error(y_test, y_test_pred) test_r2 = r2_score(y_test, y_test_pred) st.write("Displaying performance metrics ...") time.sleep(sleep_time) parameter_criterion_string = ' '.join([x.capitalize() for x in parameter_criterion.split('_')]) #if 'Mse' in parameter_criterion_string: # parameter_criterion_string = parameter_criterion_string.replace('Mse', 'MSE') rf_results = pd.DataFrame(['Random forest', train_mse, train_r2, test_mse, test_r2]).transpose() rf_results.columns = ['Method', f'Training {parameter_criterion_string}', 'Training R2', f'Test {parameter_criterion_string}', 'Test R2'] # Convert objects to numerics for col in rf_results.columns: rf_results[col] = pd.to_numeric(rf_results[col], errors='ignore') # Round to 3 digits rf_results = rf_results.round(3) status.update(label="Status", state="complete", expanded=False) # Display data info st.header('Input data', divider='rainbow') col = st.columns(4) col[0].metric(label="No. of samples", value=X.shape[0], delta="") col[1].metric(label="No. of X variables", value=X.shape[1], delta="") col[2].metric(label="No. of Training samples", value=X_train.shape[0], delta="") col[3].metric(label="No. of Test samples", value=X_test.shape[0], delta="") with st.expander('Initial dataset', expanded=True): st.dataframe(df, height=210, use_container_width=True) with st.expander('Train split', expanded=False): train_col = st.columns((3,1)) with train_col[0]: st.markdown('**X**') st.dataframe(X_train, height=210, hide_index=True, use_container_width=True) with train_col[1]: st.markdown('**y**') st.dataframe(y_train, height=210, hide_index=True, use_container_width=True) with st.expander('Test split', expanded=False): test_col = st.columns((3,1)) with test_col[0]: st.markdown('**X**') st.dataframe(X_test, height=210, hide_index=True, use_container_width=True) with test_col[1]: st.markdown('**y**') st.dataframe(y_test, height=210, hide_index=True, use_container_width=True) # Zip dataset files df.to_csv('dataset.csv', index=False) X_train.to_csv('X_train.csv', index=False) y_train.to_csv('y_train.csv', index=False) X_test.to_csv('X_test.csv', index=False) y_test.to_csv('y_test.csv', index=False) list_files = ['dataset.csv', 'X_train.csv', 'y_train.csv', 'X_test.csv', 'y_test.csv'] with zipfile.ZipFile('dataset.zip', 'w') as zipF: for file in list_files: zipF.write(file, compress_type=zipfile.ZIP_DEFLATED) with open('dataset.zip', 'rb') as datazip: btn = st.download_button( label='Download ZIP', data=datazip, file_name="dataset.zip", mime="application/octet-stream" ) # Display model parameters st.header('Model parameters', divider='rainbow') parameters_col = st.columns(3) parameters_col[0].metric(label="Data split ratio (% for Training Set)", value=parameter_split_size, delta="") parameters_col[1].metric(label="Number of estimators (n_estimators)", value=parameter_n_estimators, delta="") parameters_col[2].metric(label="Max features (max_features)", value=parameter_max_features_metric, delta="") # Display feature importance plot importances = rf.feature_importances_ feature_names = list(X.columns) forest_importances = pd.Series(importances, index=feature_names) df_importance = forest_importances.reset_index().rename(columns={'index': 'feature', 0: 'value'}) bars = alt.Chart(df_importance).mark_bar(size=40).encode( x='value:Q', y=alt.Y('feature:N', sort='-x') ).properties(height=250) performance_col = st.columns((2, 0.2, 3)) with performance_col[0]: st.header('Model performance', divider='rainbow') st.dataframe(rf_results.T.reset_index().rename(columns={'index': 'Parameter', 0: 'Value'})) with performance_col[2]: st.header('Feature importance', divider='rainbow') st.altair_chart(bars, theme='streamlit', use_container_width=True) # Prediction results st.header('Prediction results', divider='rainbow') s_y_train = pd.Series(y_train, name='actual').reset_index(drop=True) s_y_train_pred = pd.Series(y_train_pred, name='predicted').reset_index(drop=True) df_train = pd.DataFrame(data=[s_y_train, s_y_train_pred], index=None).T df_train['class'] = 'train' s_y_test = pd.Series(y_test, name='actual').reset_index(drop=True) s_y_test_pred = pd.Series(y_test_pred, name='predicted').reset_index(drop=True) df_test = pd.DataFrame(data=[s_y_test, s_y_test_pred], index=None).T df_test['class'] = 'test' df_prediction = pd.concat([df_train, df_test], axis=0) prediction_col = st.columns((2, 0.2, 3)) # Display dataframe with prediction_col[0]: st.dataframe(df_prediction, height=320, use_container_width=True) # Display scatter plot of actual vs predicted values with prediction_col[2]: scatter = alt.Chart(df_prediction).mark_circle(size=60).encode( x='actual', y='predicted', color='class' ) st.altair_chart(scatter, theme='streamlit', use_container_width=True) # Ask for CSV upload if none is detected else: st.warning('👈 Upload a CSV file or click *"Load example data"* to get started!') @st.cache_data def predict(): tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") example = dataset[0] words = example["tokens"] boxes = example["bboxes"] encoding = tokenizer(words, boxes=boxes, return_tensors="pt") outputs = model(**encoding) predicted_class_idx = outputs.logits.argmax(-1).item() predicted_class = model.config.id2label[predicted_class_idx] return predicted_class @st.cache_data def get_page_count(file_name): doc = fitz.open(stream=file_name.read()) return doc.page_count st.markdown('**1. Upload PDF**') doc_file = st.file_uploader("Upload a PDF document", type=["pdf"]) st.markdown('**2. Select Page**') if doc_file is not None: page_count = get_page_count(doc_file) page_num = st.slider('Page number', 1, page_count, 1, 1) st.markdown(f'Page: :green[{page_num}] / {page_count}') if st.button('Test', type="primary"): with st.spinner('Loading...'): prediction = predict() st.write(prediction)