Spaces:
Runtime error
Runtime error
NhatTan
commited on
Commit
·
a341af5
1
Parent(s):
078fdec
17/02/2023 v1
Browse files- Image_Filters_Streamlit_app.py +98 -0
- __pycache__/filters.cpython-310.pyc +0 -0
- filter_bw.jpg +0 -0
- filter_pencil_sketch.jpg +0 -0
- filter_sepia.jpg +0 -0
- filter_vignette.jpg +0 -0
- filters.py +60 -0
- requirements.txt +4 -0
Image_Filters_Streamlit_app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Checkout this tutorial
|
2 |
+
# https://blog.loginradius.com/engineering/guest-post/opencv-web-app-with-streamlit/
|
3 |
+
# Online deployment:
|
4 |
+
# https://towardsdatascience.com/3-easy-ways-to-deploy-your-streamlit-web-app-online-7c88bb1024b1
|
5 |
+
# https://www.youtube.com/watch?v=4SO3CUWPYf0
|
6 |
+
|
7 |
+
# Run: streamlit run Image_Filters_Streamlit_app.py
|
8 |
+
|
9 |
+
import io
|
10 |
+
import base64
|
11 |
+
import cv2
|
12 |
+
from PIL import Image
|
13 |
+
from filters import *
|
14 |
+
|
15 |
+
# Generating a link to download a particular image file.
|
16 |
+
def get_image_download_link(img, filename, text):
|
17 |
+
buffered = io.BytesIO()
|
18 |
+
img.save(buffered, format = 'JPEG')
|
19 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
20 |
+
href = f'<a href="data:file/txt;base64,{img_str}" download="{filename}">{text}</a>'
|
21 |
+
return href
|
22 |
+
|
23 |
+
# Set title.
|
24 |
+
st.title('Artistic Image Filters')
|
25 |
+
|
26 |
+
# Upload image.
|
27 |
+
uploaded_file = st.file_uploader('Choose an image file:', type=['png','jpg'])
|
28 |
+
|
29 |
+
if uploaded_file is not None:
|
30 |
+
# Convert the file to an opencv image.
|
31 |
+
raw_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
32 |
+
img = cv2.imdecode(raw_bytes, cv2.IMREAD_COLOR)
|
33 |
+
input_col, output_col = st.columns(2)
|
34 |
+
with input_col:
|
35 |
+
st.header('Original')
|
36 |
+
# Display uploaded image.
|
37 |
+
st.image(img, channels='BGR', use_column_width=True)
|
38 |
+
|
39 |
+
st.header('Filter Examples:')
|
40 |
+
# Display a selection box for choosing the filter to apply.
|
41 |
+
option = st.selectbox('Select a filter:',
|
42 |
+
( 'None',
|
43 |
+
'Black and White',
|
44 |
+
'Sepia / Vintage',
|
45 |
+
'Vignette Effect',
|
46 |
+
'Pencil Sketch',
|
47 |
+
))
|
48 |
+
|
49 |
+
# Define columns for thumbnail images.
|
50 |
+
col1, col2, col3, col4 = st.columns(4)
|
51 |
+
with col1:
|
52 |
+
st.caption('Black and White')
|
53 |
+
st.image('filter_bw.jpg')
|
54 |
+
with col2:
|
55 |
+
st.caption('Sepia / Vintage')
|
56 |
+
st.image('filter_sepia.jpg')
|
57 |
+
with col3:
|
58 |
+
st.caption('Vignette Effect')
|
59 |
+
st.image('filter_vignette.jpg')
|
60 |
+
with col4:
|
61 |
+
st.caption('Pencil Sketch')
|
62 |
+
st.image('filter_pencil_sketch.jpg')
|
63 |
+
|
64 |
+
# Flag for showing output image.
|
65 |
+
output_flag = 1
|
66 |
+
# Colorspace of output image.
|
67 |
+
color = 'BGR'
|
68 |
+
|
69 |
+
# Generate filtered image based on the selected option.
|
70 |
+
if option == 'None':
|
71 |
+
# Don't show output image.
|
72 |
+
output_flag = 0
|
73 |
+
elif option == 'Black and White':
|
74 |
+
output = bw_filter(img)
|
75 |
+
color = 'GRAY'
|
76 |
+
elif option == 'Sepia / Vintage':
|
77 |
+
output = sepia(img)
|
78 |
+
elif option == 'Vignette Effect':
|
79 |
+
level = st.slider('level', 1, 5, 2)
|
80 |
+
output = vignette(img, level)
|
81 |
+
elif option == 'Pencil Sketch':
|
82 |
+
ksize = st.slider('Blur kernel size', 1, 11, 5, step=2)
|
83 |
+
output = pencil_sketch(img, ksize)
|
84 |
+
color = 'GRAY'
|
85 |
+
|
86 |
+
with output_col:
|
87 |
+
if output_flag == 1:
|
88 |
+
st.header('Output')
|
89 |
+
st.image(output, channels=color)
|
90 |
+
# fromarray convert cv2 image into PIL format for saving it using download link.
|
91 |
+
if color == 'BGR':
|
92 |
+
result = Image.fromarray(output[:,:,::-1])
|
93 |
+
else:
|
94 |
+
result = Image.fromarray(output)
|
95 |
+
# Display link.
|
96 |
+
st.markdown(get_image_download_link(result,'output.png','Download '+'Output'),
|
97 |
+
unsafe_allow_html=True)
|
98 |
+
|
__pycache__/filters.cpython-310.pyc
ADDED
Binary file (1.54 kB). View file
|
|
filter_bw.jpg
ADDED
filter_pencil_sketch.jpg
ADDED
filter_sepia.jpg
ADDED
filter_vignette.jpg
ADDED
filters.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
|
6 |
+
# Refer to the application notebook implement the following filters
|
7 |
+
|
8 |
+
@st.cache_data
|
9 |
+
def bw_filter(img):
|
10 |
+
# Write your code here to convert img to a gray image
|
11 |
+
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
12 |
+
return img_gray
|
13 |
+
|
14 |
+
@st.cache_data
|
15 |
+
def vignette(img, level=2):
|
16 |
+
# Write your code here to create the vignette effect
|
17 |
+
height, width = img.shape[:2]
|
18 |
+
|
19 |
+
# Generate vignette mask using Gaussian kernels.
|
20 |
+
X_resultant_kernel = cv2.getGaussianKernel(width, width/level)
|
21 |
+
Y_resultant_kernel = cv2.getGaussianKernel(height, height/level)
|
22 |
+
|
23 |
+
# Generating resultant_kernel matrix.
|
24 |
+
# H x 1 * 1 x W
|
25 |
+
kernel = Y_resultant_kernel * X_resultant_kernel.T
|
26 |
+
mask = kernel / kernel.max()
|
27 |
+
|
28 |
+
img_vignette = np.copy(img)
|
29 |
+
|
30 |
+
# Applying the mask to each channel in the input image.
|
31 |
+
for i in range(3):
|
32 |
+
img_vignette[:,:,i] = img_vignette[:,:,i] * mask
|
33 |
+
|
34 |
+
|
35 |
+
return img_vignette
|
36 |
+
|
37 |
+
@st.cache_data
|
38 |
+
def sepia(img):
|
39 |
+
# Write your code here to create the sepia effect
|
40 |
+
img_sepia = img.copy()
|
41 |
+
# Converting to RGB as sepia matrix below is for RGB.
|
42 |
+
img_sepia = cv2.cvtColor(img_sepia, cv2.COLOR_BGR2RGB)
|
43 |
+
img_sepia = np.array(img_sepia, dtype = np.float64)
|
44 |
+
img_sepia = cv2.transform(img_sepia, np.matrix([[0.393, 0.769, 0.189],
|
45 |
+
[0.349, 0.686, 0.168],
|
46 |
+
[0.272, 0.534, 0.131]]))
|
47 |
+
# Clip values to the range [0, 255].
|
48 |
+
img_sepia = np.clip(img_sepia, 0, 255)
|
49 |
+
img_sepia = np.array(img_sepia, dtype = np.uint8)
|
50 |
+
img_sepia = cv2.cvtColor(img_sepia, cv2.COLOR_RGB2BGR)
|
51 |
+
return img_sepia
|
52 |
+
|
53 |
+
@st.cache_data
|
54 |
+
def pencil_sketch(img, ksize=5):
|
55 |
+
# Write your code here to create the pencil sketch effect
|
56 |
+
img_blur = cv2.GaussianBlur(img, (ksize, ksize), 0, 0)
|
57 |
+
img_sketch, _ = cv2.pencilSketch(img_blur)
|
58 |
+
return img_sketch
|
59 |
+
|
60 |
+
# Don't be constrained, add your own filters here
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.24.2
|
2 |
+
opencv_python==4.7.0.68
|
3 |
+
Pillow==9.4.0
|
4 |
+
streamlit==1.18.1
|