File size: 4,947 Bytes
54d726d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import torch.nn as nn
import torchvision
from torchinfo import summary

class conv_block(nn.Module):
    def __init__(self, in_c, out_c, act):
        super().__init__()

        self.conv1 = nn.Conv2d(in_c, out_c, kernel_size=3, padding=1)
        self.bn1 = nn.BatchNorm2d(out_c)

        self.conv2 = nn.Conv2d(out_c, out_c, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(out_c)

        if act == 'relu':
            self.activation = nn.ReLU()
        elif act == 'sigmoid':
            self.activation = nn.Sigmoid()
        else:
            self.activation = nn.Identity()

        # self.relu = nn.ReLU()

    def forward(self, inputs):
        x = self.conv1(inputs)
        x = self.bn1(x)
        x = self.activation(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.activation(x)

        return x
class Decoder_block(nn.Module):
    def __init__(self, in_channel, out_channel, kernel, stride, padding=1, out_padding=1, act = 'relu') -> None:
        super().__init__()
        self.upsample = nn.ConvTranspose2d(in_channels=in_channel,\
                                            out_channels=out_channel,\
                                            kernel_size=kernel,\
                                             stride=stride,\
                                              padding=padding,
                                              output_padding=out_padding)
        if act == 'relu':
            self.activation = nn.ReLU()
        elif act == 'sigmoid':
            self.activation = nn.Sigmoid()
        else:
            self.activation = nn.Identity()
        
    def forward(self, x):
        return self.activation(self.upsample(x))
    
class Decoder(nn.Module):
    def __init__(self, num_layers, channels, kernels, strides, activations) -> None:
        super().__init__()
        assert len(channels) -1 == len(kernels) and len(strides) == len(kernels) and num_layers == len(strides)
        assert num_layers == len(activations)
        self.layers = []
        for i in range(num_layers):
            self.layers.append(Decoder_block(in_channel=channels[i],\
                                             out_channel=channels[i+1],\
                                              kernel=kernels[i],\
                                                stride=strides[i],\
                                                 act=activations[i]))
            self.layers.append(conv_block(in_c=channels[i+1],out_c=channels[i+1], act= activations[i]))
        self.model = nn.Sequential(*self.layers)
    def forward(self, x):
        return self.model(x)

class enc_dec_model(nn.Module):
    def __init__(self, max_depth=10, backbone='resnet', unfreeze = False) -> None:
        super().__init__()
        if backbone == 'resnet':
            self.encoder = torchvision.models.resnet50(weights=torchvision.models.ResNet50_Weights.DEFAULT)
            num_layers=5
            channels=[2048,256,128,64,32,1]
            kernels=[3,3,3,3,3]
            strides = [2,2,2,2,2]
            activations=['relu', 'relu', 'relu' ,'relu', 'sigmoid']
        if unfreeze:
            for param in self.encoder.parameters():
                param.requires_grad = True
        else:    
            for param in self.encoder.parameters():
                param.requires_grad = False
            for i, child in enumerate(self.encoder.children()):
                if i == 7:
                    for j, child2 in enumerate(child.children()):
                        if j == 2:
                            # print("count:", j)
                            # print(child2)
                            for param in child2.parameters():
                                param.requires_grad = True
                if i>=8:
                    # print("count:", i)
                    # print(child)
                    for param in child.parameters():
                        param.requires_grad = True
        # input(":")
        self.encoder = torch.nn.Sequential(*(list(self.encoder.children())[:-2]))
        # self.bridge = nn.Conv2d(2048, 2048, 1, 1)

        self.decoder = Decoder(num_layers=num_layers,\
                                channels=channels,\
                                kernels=kernels,\
                                strides = strides,\
                                 activations=activations)
        self.max_depth = max_depth
    def forward(self, x):
        x = self.encoder(x)
        # x = self.bridge(x)
        # print(x)
        x = self.decoder(x)
        # print(x)
        x = x*self.max_depth
        return {'pred_d':x}
    
if __name__ == "__main__":
    # model = Decoder(num_layers=5,\
    #                 channels=[2048,256,128,64,32,1],\
    #                 kernels=[3,3,3,3,3],\
    #                 strides = [2,2,2,2,2])
    model = enc_dec_model(unfreeze=True).cuda()
    print(model)
    summary(model, input_size=(64,3,448,448))