Spaces:
Running
Running
Modifying App.py
Browse files
app.py
CHANGED
@@ -19,6 +19,26 @@ def cropping(img):
|
|
19 |
|
20 |
return img
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
23 |
print(DEVICE)
|
24 |
CWD = "."
|
@@ -36,48 +56,35 @@ CKPT_FILE_NAMES = {
|
|
36 |
}
|
37 |
MODEL_CLASSES = {
|
38 |
'Indoor': {
|
39 |
-
'Resnet_enc':enc_dec_model,
|
40 |
-
'Unet':ResNet18UNet,
|
41 |
-
'Densenet_enc':Densenet
|
42 |
},
|
43 |
|
44 |
'Outdoor': {
|
45 |
-
'Resnet_enc':enc_dec_model,
|
46 |
-
'Unet':UNetWithResnet50Encoder,
|
47 |
-
'Densenet_enc':Densenet
|
48 |
},
|
49 |
-
|
50 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
def load_model(ckpt, model, optimizer=None):
|
53 |
-
ckpt_dict = torch.load(ckpt, map_location='cpu')
|
54 |
-
# keep backward compatibility
|
55 |
-
if 'model' not in ckpt_dict and 'optimizer' not in ckpt_dict:
|
56 |
-
state_dict = ckpt_dict
|
57 |
-
else:
|
58 |
-
state_dict = ckpt_dict['model']
|
59 |
-
weights = {}
|
60 |
-
for key, value in state_dict.items():
|
61 |
-
if key.startswith('module.'):
|
62 |
-
weights[key[len('module.'):]] = value
|
63 |
-
else:
|
64 |
-
weights[key] = value
|
65 |
-
|
66 |
-
model.load_state_dict(weights)
|
67 |
-
|
68 |
-
if optimizer is not None:
|
69 |
-
optimizer_state = ckpt_dict['optimizer']
|
70 |
-
optimizer.load_state_dict(optimizer_state)
|
71 |
|
72 |
|
73 |
def predict(location, model_name, img):
|
74 |
-
ckpt_dir = f"{CWD}/ckpt/{CKPT_FILE_NAMES[location][model_name]}"
|
75 |
-
if location == 'nyu':
|
76 |
-
|
77 |
-
else:
|
78 |
-
|
79 |
-
model = MODEL_CLASSES[location][model_name](max_depth).to(DEVICE)
|
80 |
-
|
|
|
81 |
# print(img.shape)
|
82 |
# assert False
|
83 |
if img.shape == (375,1242,3):
|
|
|
19 |
|
20 |
return img
|
21 |
|
22 |
+
def load_model(ckpt, model, optimizer=None):
|
23 |
+
ckpt_dict = torch.load(ckpt, map_location='cpu')
|
24 |
+
# keep backward compatibility
|
25 |
+
if 'model' not in ckpt_dict and 'optimizer' not in ckpt_dict:
|
26 |
+
state_dict = ckpt_dict
|
27 |
+
else:
|
28 |
+
state_dict = ckpt_dict['model']
|
29 |
+
weights = {}
|
30 |
+
for key, value in state_dict.items():
|
31 |
+
if key.startswith('module.'):
|
32 |
+
weights[key[len('module.'):]] = value
|
33 |
+
else:
|
34 |
+
weights[key] = value
|
35 |
+
|
36 |
+
model.load_state_dict(weights)
|
37 |
+
|
38 |
+
if optimizer is not None:
|
39 |
+
optimizer_state = ckpt_dict['optimizer']
|
40 |
+
optimizer.load_state_dict(optimizer_state)
|
41 |
+
|
42 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
43 |
print(DEVICE)
|
44 |
CWD = "."
|
|
|
56 |
}
|
57 |
MODEL_CLASSES = {
|
58 |
'Indoor': {
|
59 |
+
'Resnet_enc':enc_dec_model(max_depth = 10),
|
60 |
+
'Unet':ResNet18UNet(max_depth = 10),
|
61 |
+
'Densenet_enc':Densenet(max_depth = 10)
|
62 |
},
|
63 |
|
64 |
'Outdoor': {
|
65 |
+
'Resnet_enc':enc_dec_model(max_depth = 80),
|
66 |
+
'Unet':UNetWithResnet50Encoder(max_depth = 80),
|
67 |
+
'Densenet_enc':Densenet(max_depth = 80)
|
68 |
},
|
|
|
69 |
}
|
70 |
+
location_types = ['Indoor', 'Outdoor']
|
71 |
+
Models = ['Resnet_enc','Unet','Densenet_enc']
|
72 |
+
for location in location_types:
|
73 |
+
for model in Models:
|
74 |
+
ckpt_dir = f"{CWD}/ckpt/{CKPT_FILE_NAMES[location][model]}"
|
75 |
+
load_model(CKPT_FILE_NAMES[location][model], MODEL_CLASSES[location][model])
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
def predict(location, model_name, img):
|
80 |
+
# ckpt_dir = f"{CWD}/ckpt/{CKPT_FILE_NAMES[location][model_name]}"
|
81 |
+
# if location == 'nyu':
|
82 |
+
# max_depth = 10
|
83 |
+
# else:
|
84 |
+
# max_depth = 80
|
85 |
+
# model = MODEL_CLASSES[location][model_name](max_depth).to(DEVICE)
|
86 |
+
model = MODEL_CLASSES[location][model_name].to(DEVICE)
|
87 |
+
# load_model(ckpt_dir,model)
|
88 |
# print(img.shape)
|
89 |
# assert False
|
90 |
if img.shape == (375,1242,3):
|