File size: 1,437 Bytes
1ea4a0e
 
f39e5b2
1ea4a0e
c950bff
4419042
f39e5b2
 
4419042
f39e5b2
1ea4a0e
 
 
 
 
 
 
 
f39e5b2
 
1ea4a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f39e5b2
1ea4a0e
 
 
791b415
 
46b69e2
1ea4a0e
791b415
1ea4a0e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
from huggingface_hub import InferenceClient
import os

hf_token = os.getenv("HF_TOKEN").strip()
api_key = os.getenv("HF_KEY").strip()
model_name = os.getenv("Z3TAAGI_ACC).strip()
system_prompt = os.getenv("SYSTEM_PROMPT").strip()

client = InferenceClient(model_name)

def respond(
    message,
    history: list[tuple[str, str]],
    max_tokens,
    temperature,
    top_p,
):
    
    messages = [{"role": "system", "content": system_prompt}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

# Gradio UI
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Maximum Response Length"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Creativity"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Neural Activity")
    ],
    theme="glass",
)

if __name__ == "__main__":
    demo.launch()