TejAndrewsACC commited on
Commit
1f8f0fa
·
verified ·
1 Parent(s): b8af5ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -54,7 +54,7 @@ class CNN(nn.Module):
54
  super(CNN, self).__init__()
55
  self.conv = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1, padding=1)
56
  self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
57
- # Adjust the fully connected layer to accommodate the correct input size
58
  self.fc = nn.Linear(16 * 4 * 8, output_dim) # 16 * 4 * 8 = 512
59
 
60
  def forward(self, x):
@@ -80,7 +80,7 @@ nn_model = NN(128, 64, 32)
80
  cnn_model = CNN(1, 32)
81
  phi_model = PhiModel(128)
82
 
83
- dummy_input = torch.rand(1, 128) # This is the input tensor for processing
84
 
85
  # Consciousness processing function
86
  def iit_consciousness_processing(dummy_input):
@@ -91,8 +91,8 @@ def iit_consciousness_processing(dummy_input):
91
  rnn_output = rnn_model(flat_input.unsqueeze(1)) # Reshape to match RNN input
92
  nn_output = nn_model(flat_input)
93
 
94
- # Update CNN input shape to ensure it's correct
95
- cnn_input = dummy_input.view(1, 1, 8, 16) # Change this to match CNN input size
96
  cnn_output = cnn_model(cnn_input)
97
 
98
  phi_output = phi_model(flat_input)
 
54
  super(CNN, self).__init__()
55
  self.conv = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1, padding=1)
56
  self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
57
+ # CNN
58
  self.fc = nn.Linear(16 * 4 * 8, output_dim) # 16 * 4 * 8 = 512
59
 
60
  def forward(self, x):
 
80
  cnn_model = CNN(1, 32)
81
  phi_model = PhiModel(128)
82
 
83
+ dummy_input = torch.rand(1, 128) #input tensor for processing
84
 
85
  # Consciousness processing function
86
  def iit_consciousness_processing(dummy_input):
 
91
  rnn_output = rnn_model(flat_input.unsqueeze(1)) # Reshape to match RNN input
92
  nn_output = nn_model(flat_input)
93
 
94
+ # Update CNN input shape
95
+ cnn_input = dummy_input.view(1, 1, 8, 16) #to match CNN input size
96
  cnn_output = cnn_model(cnn_input)
97
 
98
  phi_output = phi_model(flat_input)