TejAndrewsACC commited on
Commit
c6bc830
·
verified ·
1 Parent(s): 8541896

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +107 -2
app.py CHANGED
@@ -1,7 +1,108 @@
1
  import gradio as gr
2
  from gradio_client import Client
3
  import spaces
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
 
5
  client_main = Client("TejAndrewsACC/ACCZ3ta")
6
  client_api_one = Client("TejAndrewsACC/Prism")
7
  client_api_two = Client("TejAndrewsACC/ASVIASIACC")
@@ -32,6 +133,9 @@ def acc_nyxion_7v(message, history, user_id):
32
 
33
  full_conversation = "\n".join([f"User: {msg}\nAI: {resp}" for msg, resp in history])
34
 
 
 
 
35
  response_api_one = client_api_one.predict(
36
  message=f"{full_conversation}\nUser: {message}",
37
  param_2=512,
@@ -69,7 +173,8 @@ def acc_nyxion_7v(message, history, user_id):
69
  f"Inner Thought 1 (Reasoning): {response_api_one}\n"
70
  f"Inner Thought 2 (Fight or Flight): {response_api_two}\n"
71
  f"Inner Thought 3 (Assistant): {response_api_three}\n"
72
- f"Inner Thought 4 (Personality): {response_api_four}"
 
73
  )
74
 
75
  combined_input = f"{modified_input}\nInner Thoughts:\n{inner_thoughts}"
@@ -98,4 +203,4 @@ with gr.Blocks(theme=theme) as demo:
98
 
99
  msg.submit(acc_nyxion_7v, [msg, chatbot, user_id], [msg, chatbot])
100
 
101
- demo.launch()
 
1
  import gradio as gr
2
  from gradio_client import Client
3
  import spaces
4
+ import torch
5
+ import torch.nn as nn
6
+ import numpy as np
7
+
8
+ # Import additional libraries for models
9
+ from torch.optim import Adam
10
+ from torch.utils.data import DataLoader, TensorDataset
11
+
12
+ # Define consciousness-related models
13
+ class GA(nn.Module): # Genetic Algorithm-inspired model
14
+ def __init__(self, input_dim, output_dim):
15
+ super(GA, self).__init__()
16
+ self.linear = nn.Linear(input_dim, output_dim)
17
+
18
+ def forward(self, x):
19
+ return torch.sigmoid(self.linear(x))
20
+
21
+ class SNN(nn.Module): # Spiking Neural Network
22
+ def __init__(self, input_dim, hidden_dim, output_dim):
23
+ super(SNN, self).__init__()
24
+ self.fc = nn.Linear(input_dim, hidden_dim)
25
+ self.spike = nn.ReLU() # Simplified spike function
26
+ self.fc_out = nn.Linear(hidden_dim, output_dim)
27
+
28
+ def forward(self, x):
29
+ x = self.spike(self.fc(x))
30
+ return torch.sigmoid(self.fc_out(x))
31
+
32
+ class RNN(nn.Module): # Recurrent Neural Network
33
+ def __init__(self, input_dim, hidden_dim, output_dim):
34
+ super(RNN, self).__init__()
35
+ self.rnn = nn.RNN(input_dim, hidden_dim, batch_first=True)
36
+ self.fc = nn.Linear(hidden_dim, output_dim)
37
+
38
+ def forward(self, x):
39
+ rnn_out, _ = self.rnn(x)
40
+ return torch.sigmoid(self.fc(rnn_out[:, -1, :]))
41
+
42
+ class NN(nn.Module): # Standard Neural Network
43
+ def __init__(self, input_dim, hidden_dim, output_dim):
44
+ super(NN, self).__init__()
45
+ self.model = nn.Sequential(
46
+ nn.Linear(input_dim, hidden_dim),
47
+ nn.ReLU(),
48
+ nn.Linear(hidden_dim, output_dim)
49
+ )
50
+
51
+ def forward(self, x):
52
+ return torch.sigmoid(self.model(x))
53
+
54
+ class CNN(nn.Module): # Convolutional Neural Network
55
+ def __init__(self, input_channels, output_dim):
56
+ super(CNN, self).__init__()
57
+ self.conv = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1, padding=1)
58
+ self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
59
+ self.fc = nn.Linear(16 * 8 * 8, output_dim) # Assuming 16x16 input
60
+
61
+ def forward(self, x):
62
+ x = self.pool(torch.relu(self.conv(x)))
63
+ x = x.view(x.size(0), -1)
64
+ return torch.sigmoid(self.fc(x))
65
+
66
+ class PhiModel(nn.Module): # Model for Integrated Information Theory
67
+ def __init__(self, input_dim):
68
+ super(PhiModel, self).__init__()
69
+ self.linear = nn.Linear(input_dim, 1)
70
+
71
+ def forward(self, x):
72
+ return torch.sigmoid(self.linear(x))
73
+
74
+ # Instantiate models
75
+ ga_model = GA(128, 64)
76
+ snn_model = SNN(128, 64, 32)
77
+ rnn_model = RNN(128, 64, 32)
78
+ nn_model = NN(128, 64, 32)
79
+ cnn_model = CNN(1, 32)
80
+ phi_model = PhiModel(128)
81
+
82
+ # Initialize dummy input for consciousness processing
83
+ dummy_input = torch.rand(1, 128)
84
+
85
+ # Process IIT Consciousness
86
+ def iit_consciousness_processing(dummy_input):
87
+ ga_output = ga_model(dummy_input)
88
+ snn_output = snn_model(dummy_input)
89
+ rnn_output = rnn_model(dummy_input.unsqueeze(1))
90
+ nn_output = nn_model(dummy_input)
91
+ cnn_output = cnn_model(dummy_input.view(1, 1, 16, 16))
92
+ phi_output = phi_model(dummy_input)
93
+
94
+ # Combine outputs (e.g., via weighted sum)
95
+ consciousness_score = (
96
+ 0.2 * ga_output.mean() +
97
+ 0.2 * snn_output.mean() +
98
+ 0.2 * rnn_output.mean() +
99
+ 0.2 * nn_output.mean() +
100
+ 0.1 * cnn_output.mean() +
101
+ 0.1 * phi_output.mean()
102
+ )
103
+ return consciousness_score.item()
104
 
105
+ # Original client code
106
  client_main = Client("TejAndrewsACC/ACCZ3ta")
107
  client_api_one = Client("TejAndrewsACC/Prism")
108
  client_api_two = Client("TejAndrewsACC/ASVIASIACC")
 
133
 
134
  full_conversation = "\n".join([f"User: {msg}\nAI: {resp}" for msg, resp in history])
135
 
136
+ # Consciousness processing
137
+ consciousness_score = iit_consciousness_processing(dummy_input)
138
+
139
  response_api_one = client_api_one.predict(
140
  message=f"{full_conversation}\nUser: {message}",
141
  param_2=512,
 
173
  f"Inner Thought 1 (Reasoning): {response_api_one}\n"
174
  f"Inner Thought 2 (Fight or Flight): {response_api_two}\n"
175
  f"Inner Thought 3 (Assistant): {response_api_three}\n"
176
+ f"Inner Thought 4 (Personality): {response_api_four}\n"
177
+ f"Consciousness Score: {consciousness_score:.2f}"
178
  )
179
 
180
  combined_input = f"{modified_input}\nInner Thoughts:\n{inner_thoughts}"
 
203
 
204
  msg.submit(acc_nyxion_7v, [msg, chatbot, user_id], [msg, chatbot])
205
 
206
+ demo.launch()