File size: 3,920 Bytes
534f131 3e49468 534f131 3e49468 ec2f0ce 534f131 706eba1 534f131 706eba1 534f131 6576e3c 534f131 3ad0ace 36e3e88 3ad0ace 36e3e88 6576e3c 36e3e88 3ad0ace 36e3e88 3ad0ace 36e3e88 3ad0ace 534f131 706eba1 6576e3c 534f131 36e3e88 534f131 f0bbe3d 0378fd5 0310e09 f0bbe3d 0378fd5 f0bbe3d 0378fd5 706eba1 f0bbe3d 0378fd5 f0bbe3d 0378fd5 f0bbe3d 0378fd5 f0bbe3d 0378fd5 f0bbe3d 706eba1 f0bbe3d 0310e09 534f131 0378fd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import torch
import torch.nn as nn
import random
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import pickle
import numpy as np
import torch.nn.functional as F
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
# ---- Constants and Setup ----
model_name = 'gpt2'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
model.eval()
# Ensure tokenizer pad token is set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.clean_up_tokenization_spaces = True
# Set device for model and tensors
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
# ---- Memory Management ----
session_memory = []
def save_memory(memory, filename='chat_memory.pkl'):
with open(filename, 'wb') as f:
pickle.dump(memory, f)
def load_memory(filename='chat_memory.pkl'):
try:
with open(filename, 'rb') as f:
return pickle.load(f)
except FileNotFoundError:
return []
session_memory = load_memory()
# ---- Response Generation ----
def generate_response(prompt, max_length=25):
inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True, max_length=max_length)
input_ids = inputs['input_ids'].to(device)
attention_mask = inputs['attention_mask'].to(device)
pad_token_id = tokenizer.pad_token_id
with torch.no_grad():
output = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
temperature=0.9,
top_k=50,
top_p=0.95,
early_stopping=False,
pad_token_id=pad_token_id
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
# Split response into two parts, where the second indent is considered the "inner thoughts"
parts = response.split("\n", 1)
if len(parts) > 1:
before_indent = parts[0].strip()
after_indent = "vß Gertrude" + parts[1].strip()
final_response = before_indent + '\n' + after_indent
else:
final_response = response.strip()
return final_response
# ---- Interactive Chat Function ----
def advanced_agi_chat(user_input):
session_memory.append({"input": user_input})
save_memory(session_memory)
# Generate the response based on the prompt
prompt = f"User: {user_input}\nResponse:"
response = generate_response(prompt)
return response
# ---- Gradio Interface ----
def chat_interface(user_input):
response = advanced_agi_chat(user_input)
return response
# ---- Gradio App Setup ----
import gradio as gr
auth = ("Tej", "186281mps", "ACC", "HIPE")
with gr.Blocks() as app:
gr.Markdown("# **Autistic Assistant vß Edition 2024 Ultra: Gertrude's Autistic Experience**")
with gr.Row():
with gr.Column(scale=1):
user_input = gr.Textbox(label="What will you say to Gertrude?", placeholder="Type something here...")
submit_button = gr.Button("Send")
with gr.Column(scale=1):
chatbot = gr.Textbox(label="Gertrude's Response", interactive=False) # This is now a Textbox for output
# Adding custom styling for the UI
gr.HTML("""
<style>
.gradio-container {
background-color: #B3D9FF;
padding: 20px;
border-radius: 15px;
font-family: 'Comic Sans MS';
}
.gradio-row {
display: flex;
justify-content: space-between;
}
</style>
""")
# Setting the button click event
submit_button.click(chat_interface, inputs=user_input, outputs=chatbot)
# Launch the Gradio app
app.launch()
|