File size: 3,920 Bytes
534f131
 
3e49468
534f131
 
 
3e49468
ec2f0ce
534f131
 
 
 
 
 
 
706eba1
534f131
 
 
 
 
706eba1
534f131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6576e3c
534f131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ad0ace
36e3e88
3ad0ace
 
36e3e88
6576e3c
36e3e88
3ad0ace
36e3e88
3ad0ace
36e3e88
3ad0ace
534f131
 
 
 
 
706eba1
6576e3c
534f131
 
36e3e88
534f131
 
f0bbe3d
 
0378fd5
0310e09
f0bbe3d
0378fd5
 
f0bbe3d
 
 
 
 
0378fd5
 
 
 
 
 
 
 
706eba1
f0bbe3d
 
0378fd5
f0bbe3d
0378fd5
 
f0bbe3d
0378fd5
f0bbe3d
0378fd5
f0bbe3d
 
706eba1
 
f0bbe3d
 
0310e09
534f131
 
0378fd5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import random
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import pickle
import numpy as np
import torch.nn.functional as F
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch

# ---- Constants and Setup ----
model_name = 'gpt2'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
model.eval()

# Ensure tokenizer pad token is set
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

tokenizer.clean_up_tokenization_spaces = True

# Set device for model and tensors
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

# ---- Memory Management ----
session_memory = []

def save_memory(memory, filename='chat_memory.pkl'):
    with open(filename, 'wb') as f:
        pickle.dump(memory, f)

def load_memory(filename='chat_memory.pkl'):
    try:
        with open(filename, 'rb') as f:
            return pickle.load(f)
    except FileNotFoundError:
        return []

session_memory = load_memory()

# ---- Response Generation ----
def generate_response(prompt, max_length=25):
    inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True, max_length=max_length)
    input_ids = inputs['input_ids'].to(device)
    attention_mask = inputs['attention_mask'].to(device)
    pad_token_id = tokenizer.pad_token_id

    with torch.no_grad():
        output = model.generate(
            input_ids,
            attention_mask=attention_mask,
            max_length=max_length,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            do_sample=True,
            temperature=0.9,
            top_k=50,
            top_p=0.95,
            early_stopping=False,
            pad_token_id=pad_token_id
        )

    response = tokenizer.decode(output[0], skip_special_tokens=True)

    # Split response into two parts, where the second indent is considered the "inner thoughts"
    parts = response.split("\n", 1)
    if len(parts) > 1:
        before_indent = parts[0].strip()
        after_indent = "vß Gertrude" + parts[1].strip()
        final_response = before_indent + '\n' + after_indent
    else:
        final_response = response.strip()

    return final_response

# ---- Interactive Chat Function ----
def advanced_agi_chat(user_input):
    session_memory.append({"input": user_input})
    save_memory(session_memory)

    # Generate the response based on the prompt
    prompt = f"User: {user_input}\nResponse:"
    response = generate_response(prompt)

    return response

# ---- Gradio Interface ----
def chat_interface(user_input):
    response = advanced_agi_chat(user_input)
    return response

# ---- Gradio App Setup ----
import gradio as gr

auth = ("Tej", "186281mps", "ACC", "HIPE")

with gr.Blocks() as app:
    gr.Markdown("# **Autistic Assistant vß Edition 2024 Ultra: Gertrude's Autistic Experience**")
    
    with gr.Row():
        with gr.Column(scale=1):
            user_input = gr.Textbox(label="What will you say to Gertrude?", placeholder="Type something here...")
            submit_button = gr.Button("Send")
        with gr.Column(scale=1):
            chatbot = gr.Textbox(label="Gertrude's Response", interactive=False)  # This is now a Textbox for output

    # Adding custom styling for the UI
    gr.HTML("""
        <style>
            .gradio-container { 
                background-color: #B3D9FF; 
                padding: 20px; 
                border-radius: 15px; 
                font-family: 'Comic Sans MS'; 
            }
            .gradio-row { 
                display: flex;
                justify-content: space-between;
            }
        </style>
    """)

    # Setting the button click event
    submit_button.click(chat_interface, inputs=user_input, outputs=chatbot)

# Launch the Gradio app
app.launch()