TejAndrewsACC's picture
Update app.py
9dcc4db verified
raw
history blame
7.15 kB
import torch
import torch.nn as nn
import random
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import pickle
import numpy as np
import torch.nn.functional as F
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
import gradio as gr
# ---- Constants and Setup ----
model_name = 'gpt2'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
model.eval()
# Ensure tokenizer pad token is set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.clean_up_tokenization_spaces = True
# Set device for model and tensorss
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
# ---- Memory Management ----
session_memory = []
def save_memory(memory, filename='chat_memory.pkl'):
with open(filename, 'wb') as f:
pickle.dump(memory, f)
def load_memory(filename='chat_memory.pkl'):
try:
with open(filename, 'rb') as f:
return pickle.load(f)
except (FileNotFoundError, EOFError):
return [] # Return an empty list if the file is empty or doesn't exist
session_memory = load_memory()
# ---- Response Generation ----
def generate_response(prompt, max_length=512):
inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True, max_length=max_length)
input_ids = inputs['input_ids'].to(device)
attention_mask = inputs['attention_mask'].to(device)
pad_token_id = tokenizer.pad_token_id
with torch.no_grad():
output = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
temperature=0.9,
top_k=50,
top_p=0.95,
early_stopping=False,
pad_token_id=pad_token_id
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
# Split response into two parts, where the second indent is considered the "inner thoughts"
parts = response.split("\n", 1)
if len(parts) > 1:
before_indent = parts[0].strip()
after_indent = "vß Gertrude" + parts[1].strip()
final_response = before_indent + '\n' + after_indent
else:
final_response = response.strip()
return final_response
# ---- Interactive Chat Function ----
def advanced_agi_chat(user_input):
session_memory.append({"input": user_input})
save_memory(session_memory)
# Generate the response based on the prompt
prompt = f"User: {user_input}\nResponse:"
response = generate_response(prompt)
return response
# ---- Gradio Interface ----
def chat_interface(user_input):
response = advanced_agi_chat(user_input)
return response
# ---- RNN Model ----
class RNNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNNModel, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, hidden):
out, hidden = self.rnn(x, hidden)
out = self.fc(out[:, -1, :]) # Use last time-step
return out, hidden
def init_hidden(self, batch_size):
return torch.zeros(batch_size, self.hidden_size).to(device)
# ---- CNN Model ----
class CNNModel(nn.Module):
def __init__(self, input_channels, output_size):
super(CNNModel, self).__init__()
self.conv1 = nn.Conv2d(input_channels, 16, 3)
self.conv2 = nn.Conv2d(16, 32, 3)
self.fc = nn.Linear(32 * 6 * 6, output_size) # Assume input size is 28x28
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(x.size(0), -1) # Flatten
x = self.fc(x)
return x
# ---- Neural Network (Feedforward) ----
class NNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(NNModel, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# ---- PHI Model ----
class PHIModel(nn.Module):
def __init__(self, input_size, output_size):
super(PHIModel, self).__init__()
self.phi = (1 + np.sqrt(5)) / 2 # Golden Ratio
self.fc1 = nn.Linear(input_size, int(input_size * self.phi))
self.fc2 = nn.Linear(int(input_size * self.phi), output_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# ---- Genetic Algorithm (GA) ----
def ga_optimization(population, generations, mutation_rate):
def fitness_function(individual):
return sum(individual) # Simple fitness: sum of individual genes
for gen in range(generations):
population.sort(key=fitness_function, reverse=True) # Sort by fitness
next_generation = population[:len(population)//2] # Keep top half
# Crossover: Create new individuals by combining genes
for i in range(len(population) // 2):
parent1 = next_generation[i]
parent2 = next_generation[len(population)//2 + i]
crossover_point = random.randint(1, len(parent1) - 1)
child = parent1[:crossover_point] + parent2[crossover_point:]
next_generation.append(child)
# Mutation: Randomly mutate genes
for individual in next_generation:
if random.random() < mutation_rate:
mutation_point = random.randint(0, len(individual) - 1)
individual[mutation_point] = random.randint(0, 1)
population = next_generation # Update population
return population[0] # Return the best individual
# ---- Gradio App Setup ----
auth = ("Tej", "186281mps", "ACC", "HIPE")
with gr.Blocks() as app:
gr.Markdown("# **Autistic Assistant vß Edition 2024 Ultra: Gertrude's Autistic Experience**")
with gr.Row():
with gr.Column(scale=1):
user_input = gr.Textbox(label="🎙️What will you say to Gertrude?🎙️", placeholder="⌨️Type something here...")
submit_button = gr.Button("💬Send💬")
with gr.Column(scale=1):
chatbot = gr.Textbox(label="🤖Gertrude's Response:", interactive=False) # This is now a Textbox for output
# Adding custom styling for the UI
gr.HTML("""
<style>
.gradio-container {
background-color: #B3D9FF;
padding: 20px;
border-radius: 15px;
font-family: 'Comic Sans MS';
}
.gradio-row {
display: flex;
justify-content: space-between;
}
</style>
""")
# Setting the button click event
submit_button.click(chat_interface, inputs=user_input, outputs=chatbot)
# Launch the Gradio app
app.launch()