TejAndrewsACC commited on
Commit
887767f
·
verified ·
1 Parent(s): 694626a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +188 -185
app.py CHANGED
@@ -1,210 +1,213 @@
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
- # ---- Gradio App Setup ----
4
- auth = ("Tej", "186281mps", "ACC", "HIPE")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Function to simulate the button click for Pain and Pleasure buttons
7
- def simulate_button_click(button_type):
8
- return gr.update(interactive=True, elem_id="chatbot_output")
9
-
10
- # Function to update AI behavior settings dynamically
11
- def update_ai_settings(temp, max_length, top_p, no_repeat_ngrams, adjust_response_style):
12
- # Update AI settings based on user inputs
13
- model.config.temperature = temp
14
- model.config.max_length = max_length
15
- model.config.top_p = top_p
16
- model.config.no_repeat_ngram_size = no_repeat_ngrams
17
-
18
- # Optionally adjust the response style here (e.g., adjust based on a tone or creative behavior)
19
- return f"AI Settings Updated: Temperature={temp}, Max Length={max_length}, Top P={top_p}, N-grams={no_repeat_ngrams}"
20
-
21
- # Function to simulate theme switching
22
- def update_theme(theme_color):
23
- if theme_color == "Light Blue":
24
- background_color = "#ADD8E6"
25
- text_color = "#333333"
26
- elif theme_color == "Dark Mode":
27
- background_color = "#2e2e2e"
28
- text_color = "#FFFFFF"
29
- elif theme_color == "Purple":
30
- background_color = "#9b59b6"
31
- text_color = "#FFFFFF"
32
  else:
33
- background_color = "#FFFFFF"
34
- text_color = "#333333"
35
-
36
- return gr.update(background_color=background_color, text_color=text_color)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  with gr.Blocks() as app:
39
- # Header section
40
  gr.Markdown("# **Autistic Assistant vß Edition 2024 Ultra: Gertrude's Autistic Experience**")
41
 
42
- # User input and response UI layout
43
- with gr.Row():
44
- with gr.Column(scale=1):
45
- user_input = gr.Textbox(
46
- label="What will you say to Gertrude?",
47
- placeholder="Type something here...",
48
- lines=3,
49
- elem_id="user_input_box"
50
- )
51
- submit_button = gr.Button("Send", elem_id="send_button")
52
-
53
- with gr.Column(scale=1):
54
- chatbot = gr.Textbox(
55
- label="Gertrude's Response",
56
- interactive=False,
57
- elem_id="chatbot_output",
58
- lines=8
59
- )
60
-
61
- # Buttons for "Pain" and "Pleasure" with cool animations
62
  with gr.Row():
63
  with gr.Column(scale=1):
64
- pain_button = gr.Button("Pain", elem_id="pain_button", variant="stop", size="lg")
 
65
  with gr.Column(scale=1):
66
- pleasure_button = gr.Button("Pleasure", elem_id="pleasure_button", variant="primary", size="lg")
67
-
68
- # Settings Panel: Controls for both AI and UI theme settings
69
- with gr.Column(scale=1):
70
- gr.Markdown("### Settings Panel")
71
-
72
- # AI behavior settings
73
- gr.Markdown("#### AI Response Settings")
74
- temperature_slider = gr.Slider(minimum=0.1, maximum=1.5, value=0.9, step=0.1, label="Creativity")
75
- max_length_slider = gr.Slider(minimum=50, maximum=1024, value=512, step=10, label="Max Response Length")
76
- top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Mutation")
77
- ngram_slider = gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Neural Netwok Layers")
78
-
79
- # UI Theme settings
80
- gr.Markdown("#### UI Theme Settings")
81
- theme_selector = gr.Dropdown(
82
- choices=["Light Blue", "Dark Mode", "Purple", "Default"],
83
- label="Select Theme",
84
- value="Light Blue"
85
- )
86
-
87
- response_style_toggle = gr.Checkbox(
88
- label="Adjust AI response style (e.g., creativity level)",
89
- value=True
90
- )
91
 
92
- # Button to update settings
93
- update_button = gr.Button("Update Settings")
94
-
95
- # Custom Styling for Buttons, Background, and Text
96
  gr.HTML("""
97
  <style>
98
- /* Main Container Styling */
99
  .gradio-container {
100
- background-color: #ADD8E6;
101
- padding: 20px;
102
- border-radius: 20px;
103
  font-family: 'Comic Sans MS';
104
- box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
105
  }
106
-
107
- /* Header Styling */
108
- .gradio-markdown {
109
- font-size: 28px;
110
- font-weight: bold;
111
- color: #3366CC;
112
- text-align: center;
113
- padding-bottom: 20px;
114
- }
115
-
116
- /* User Input Box Styling */
117
- #user_input_box {
118
- background-color: #E8F7FF;
119
- border: 2px solid #A3C9F1;
120
- border-radius: 10px;
121
- padding: 10px;
122
- }
123
-
124
- /* Send Button Styling */
125
- #send_button {
126
- background-color: #4CAF50;
127
- color: white;
128
- font-size: 18px;
129
- border-radius: 10px;
130
- width: 100%;
131
- padding: 15px;
132
- }
133
-
134
- /* Chatbot Output Styling */
135
- #chatbot_output {
136
- background-color: #FFFFFF;
137
- border: 2px solid #A3C9F1;
138
- border-radius: 10px;
139
- padding: 10px;
140
- font-size: 16px;
141
- color: #333333;
142
- overflow-y: scroll;
143
- }
144
-
145
- /* Pain and Pleasure Buttons Styling */
146
- #pain_button {
147
- background-color: #FF5733;
148
- color: white;
149
- width: 100%;
150
- height: 50px;
151
- font-size: 24px;
152
- border-radius: 12px;
153
- transition: transform 0.3s ease;
154
- }
155
-
156
- #pain_button:active {
157
- transform: scale(0.95);
158
- }
159
-
160
- #pleasure_button {
161
- background-color: #4CAF50;
162
- color: white;
163
- width: 100%;
164
- height: 50px;
165
- font-size: 24px;
166
- border-radius: 12px;
167
- transition: transform 0.3s ease;
168
- }
169
-
170
- #pleasure_button:active {
171
- transform: scale(0.95);
172
- }
173
-
174
- /* Custom Animation for Button Clicks */
175
- @keyframes pulse {
176
- 0% {
177
- transform: scale(1);
178
- }
179
- 50% {
180
- transform: scale(1.1);
181
- }
182
- 100% {
183
- transform: scale(1);
184
- }
185
- }
186
-
187
- .animate__pulse {
188
- animation: pulse 0.5s ease;
189
  }
190
  </style>
191
  """)
192
 
193
- # Interaction Logic
194
- def chat_interface(user_input):
195
- response = advanced_agi_chat(user_input)
196
- return response
197
-
198
- # Now we pass the actual button components as inputs
199
  submit_button.click(chat_interface, inputs=user_input, outputs=chatbot)
200
- pain_button.click(simulate_button_click, inputs=pain_button, outputs=chatbot)
201
- pleasure_button.click(simulate_button_click, inputs=pleasure_button, outputs=chatbot)
202
-
203
- # Update settings and UI theme
204
- update_button.click(update_ai_settings,
205
- inputs=[temperature_slider, max_length_slider, top_p_slider, ngram_slider, response_style_toggle],
206
- outputs=chatbot)
207
- theme_selector.change(update_theme, inputs=theme_selector, outputs=gr.HTML(""))
208
 
209
  # Launch the Gradio app
210
  app.launch()
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import random
4
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
5
+ import pickle
6
+ import numpy as np
7
+ import torch.nn.functional as F
8
+ from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
9
  import gradio as gr
10
 
11
+ # ---- Constants and Setup ----
12
+ model_name = 'gpt2'
13
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
14
+ model = GPT2LMHeadModel.from_pretrained(model_name)
15
+ model.eval()
16
+
17
+ # Ensure tokenizer pad token is set
18
+ if tokenizer.pad_token is None:
19
+ tokenizer.pad_token = tokenizer.eos_token
20
+
21
+ tokenizer.clean_up_tokenization_spaces = True
22
+
23
+ # Set device for model and tensors
24
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
25
+ model.to(device)
26
+
27
+ # ---- Memory Management ----
28
+ session_memory = []
29
+
30
+ def save_memory(memory, filename='chat_memory.pkl'):
31
+ with open(filename, 'wb') as f:
32
+ pickle.dump(memory, f)
33
+
34
+ def load_memory(filename='chat_memory.pkl'):
35
+ try:
36
+ with open(filename, 'rb') as f:
37
+ return pickle.load(f)
38
+ except (FileNotFoundError, EOFError):
39
+ return [] # Return an empty list if the file is empty or doesn't exist
40
+
41
+
42
+ session_memory = load_memory()
43
+
44
+ # ---- Response Generation ----
45
+ def generate_response(prompt, max_length=512):
46
+ inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True, max_length=max_length)
47
+ input_ids = inputs['input_ids'].to(device)
48
+ attention_mask = inputs['attention_mask'].to(device)
49
+ pad_token_id = tokenizer.pad_token_id
50
+
51
+ with torch.no_grad():
52
+ output = model.generate(
53
+ input_ids,
54
+ attention_mask=attention_mask,
55
+ max_length=max_length,
56
+ num_return_sequences=1,
57
+ no_repeat_ngram_size=2,
58
+ do_sample=True,
59
+ temperature=0.9,
60
+ top_k=50,
61
+ top_p=0.95,
62
+ early_stopping=False,
63
+ pad_token_id=pad_token_id
64
+ )
65
 
66
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
67
+
68
+ # Split response into two parts, where the second indent is considered the "inner thoughts"
69
+ parts = response.split("\n", 1)
70
+ if len(parts) > 1:
71
+ before_indent = parts[0].strip()
72
+ after_indent = "vß Gertrude" + parts[1].strip()
73
+ final_response = before_indent + '\n' + after_indent
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  else:
75
+ final_response = response.strip()
76
+
77
+ return final_response
78
+
79
+ # ---- Interactive Chat Function ----
80
+ def advanced_agi_chat(user_input):
81
+ session_memory.append({"input": user_input})
82
+ save_memory(session_memory)
83
+
84
+ # Generate the response based on the prompt
85
+ prompt = f"User: {user_input}\nResponse:"
86
+ response = generate_response(prompt)
87
+
88
+ return response
89
+
90
+ # ---- Gradio Interface ----
91
+ def chat_interface(user_input):
92
+ response = advanced_agi_chat(user_input)
93
+ return response
94
+
95
+ # ---- RNN Model ----
96
+ class RNNModel(nn.Module):
97
+ def __init__(self, input_size, hidden_size, output_size):
98
+ super(RNNModel, self).__init__()
99
+ self.hidden_size = hidden_size
100
+ self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
101
+ self.fc = nn.Linear(hidden_size, output_size)
102
+
103
+ def forward(self, x, hidden):
104
+ out, hidden = self.rnn(x, hidden)
105
+ out = self.fc(out[:, -1, :]) # Use last time-step
106
+ return out, hidden
107
+
108
+ def init_hidden(self, batch_size):
109
+ return torch.zeros(batch_size, self.hidden_size).to(device)
110
+
111
+ # ---- CNN Model ----
112
+ class CNNModel(nn.Module):
113
+ def __init__(self, input_channels, output_size):
114
+ super(CNNModel, self).__init__()
115
+ self.conv1 = nn.Conv2d(input_channels, 16, 3)
116
+ self.conv2 = nn.Conv2d(16, 32, 3)
117
+ self.fc = nn.Linear(32 * 6 * 6, output_size) # Assume input size is 28x28
118
+
119
+ def forward(self, x):
120
+ x = F.relu(F.max_pool2d(self.conv1(x), 2))
121
+ x = F.relu(F.max_pool2d(self.conv2(x), 2))
122
+ x = x.view(x.size(0), -1) # Flatten
123
+ x = self.fc(x)
124
+ return x
125
+
126
+ # ---- Neural Network (Feedforward) ----
127
+ class NNModel(nn.Module):
128
+ def __init__(self, input_size, hidden_size, output_size):
129
+ super(NNModel, self).__init__()
130
+ self.fc1 = nn.Linear(input_size, hidden_size)
131
+ self.fc2 = nn.Linear(hidden_size, output_size)
132
+
133
+ def forward(self, x):
134
+ x = F.relu(self.fc1(x))
135
+ x = self.fc2(x)
136
+ return x
137
+
138
+ # ---- PHI Model ----
139
+ class PHIModel(nn.Module):
140
+ def __init__(self, input_size, output_size):
141
+ super(PHIModel, self).__init__()
142
+ self.phi = (1 + np.sqrt(5)) / 2 # Golden Ratio
143
+ self.fc1 = nn.Linear(input_size, int(input_size * self.phi))
144
+ self.fc2 = nn.Linear(int(input_size * self.phi), output_size)
145
+
146
+ def forward(self, x):
147
+ x = F.relu(self.fc1(x))
148
+ x = self.fc2(x)
149
+ return x
150
+
151
+ # ---- Genetic Algorithm (GA) ----
152
+ def ga_optimization(population, generations, mutation_rate):
153
+ def fitness_function(individual):
154
+ return sum(individual) # Simple fitness: sum of individual genes
155
+
156
+ for gen in range(generations):
157
+ population.sort(key=fitness_function, reverse=True) # Sort by fitness
158
+ next_generation = population[:len(population)//2] # Keep top half
159
+
160
+ # Crossover: Create new individuals by combining genes
161
+ for i in range(len(population) // 2):
162
+ parent1 = next_generation[i]
163
+ parent2 = next_generation[len(population)//2 + i]
164
+ crossover_point = random.randint(1, len(parent1) - 1)
165
+ child = parent1[:crossover_point] + parent2[crossover_point:]
166
+ next_generation.append(child)
167
+
168
+ # Mutation: Randomly mutate genes
169
+ for individual in next_generation:
170
+ if random.random() < mutation_rate:
171
+ mutation_point = random.randint(0, len(individual) - 1)
172
+ individual[mutation_point] = random.randint(0, 1)
173
+
174
+ population = next_generation # Update population
175
+
176
+ return population[0] # Return the best individual
177
+
178
+ # ---- Gradio App Setup ----
179
+ auth = ("Tej", "186281mps", "ACC", "HIPE")
180
 
181
  with gr.Blocks() as app:
 
182
  gr.Markdown("# **Autistic Assistant vß Edition 2024 Ultra: Gertrude's Autistic Experience**")
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
  with gr.Row():
185
  with gr.Column(scale=1):
186
+ user_input = gr.Textbox(label="What will you say to Gertrude?", placeholder="Type something here...")
187
+ submit_button = gr.Button("Send")
188
  with gr.Column(scale=1):
189
+ chatbot = gr.Textbox(label="Gertrude's Response", interactive=False) # This is now a Textbox for output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
 
191
+ # Adding custom styling for the UI
 
 
 
192
  gr.HTML("""
193
  <style>
 
194
  .gradio-container {
195
+ background-color: #B3D9FF;
196
+ padding: 20px;
197
+ border-radius: 15px;
198
  font-family: 'Comic Sans MS';
 
199
  }
200
+ .gradio-row {
201
+ display: flex;
202
+ justify-content: space-between;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
  }
204
  </style>
205
  """)
206
 
207
+ # Setting the button click event
 
 
 
 
 
208
  submit_button.click(chat_interface, inputs=user_input, outputs=chatbot)
 
 
 
 
 
 
 
 
209
 
210
  # Launch the Gradio app
211
  app.launch()
212
+
213
+