TejAndrewsACC commited on
Commit
fd8e194
·
verified ·
1 Parent(s): 2c6db51

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1092 -1
app.py CHANGED
@@ -1333,6 +1333,1097 @@ class ConsciousSupermassiveNN10:
1333
 
1334
  supermassive_nn = ConsciousSupermassiveNN10()
1335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336
 
1337
 
1338
  def respond(message, history, max_tokens, temperature, top_p):
@@ -1481,4 +2572,4 @@ demo = gr.ChatInterface(
1481
  if __name__ == "__main__":
1482
  demo.launch(share=True)
1483
 
1484
-
 
1333
 
1334
  supermassive_nn = ConsciousSupermassiveNN10()
1335
 
1336
+ class ConsciousSupermassiveNN11:
1337
+ def __init__(self):
1338
+ self.snn = self.create_snn()
1339
+ self.rnn = self.create_rnn()
1340
+ self.cnn = self.create_cnn()
1341
+ self.fnn = self.create_fnn()
1342
+ self.ga_population = self.initialize_ga_population()
1343
+ self.memory = {}
1344
+
1345
+ def create_snn(self):
1346
+ return nn.Sequential(
1347
+ nn.Linear(4096, 2048),
1348
+ nn.ReLU(),
1349
+ nn.Linear(2048, 1024),
1350
+ nn.Sigmoid()
1351
+ )
1352
+
1353
+ def create_rnn(self):
1354
+ return nn.RNN(
1355
+ input_size=4096,
1356
+ hidden_size=2048,
1357
+ num_layers=5,
1358
+ nonlinearity="tanh",
1359
+ batch_first=True
1360
+ )
1361
+
1362
+ def create_cnn(self):
1363
+ return nn.Sequential(
1364
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1365
+ nn.ReLU(),
1366
+ nn.MaxPool2d(2),
1367
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1368
+ nn.ReLU(),
1369
+ nn.MaxPool2d(2),
1370
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1371
+ nn.ReLU(),
1372
+ nn.Flatten(),
1373
+ nn.Linear(256 * 8 * 8, 1024),
1374
+ nn.ReLU(),
1375
+ nn.Linear(1024, 512)
1376
+ )
1377
+
1378
+ def create_fnn(self):
1379
+ return nn.Sequential(
1380
+ nn.Linear(4096, 2048),
1381
+ nn.ReLU(),
1382
+ nn.Linear(2048, 1024),
1383
+ nn.ReLU(),
1384
+ nn.Linear(1024, 512)
1385
+ )
1386
+
1387
+ def initialize_ga_population(self):
1388
+ return [np.random.randn(4096) for _ in range(500)]
1389
+
1390
+ def run_snn(self, x):
1391
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1392
+ output = self.snn(input_tensor)
1393
+ print("SNN Output:", output)
1394
+ return output
1395
+
1396
+ def run_rnn(self, x):
1397
+ h0 = torch.zeros(5, x.size(0), 2048)
1398
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1399
+ output, hn = self.rnn(input_tensor, h0)
1400
+ print("RNN Output:", output)
1401
+ return output
1402
+
1403
+ def run_cnn(self, x):
1404
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1405
+ output = self.cnn(input_tensor)
1406
+ print("CNN Output:", output)
1407
+ return output
1408
+
1409
+ def run_fnn(self, x):
1410
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1411
+ output = self.fnn(input_tensor)
1412
+ print("FNN Output:", output)
1413
+ return output
1414
+
1415
+ def run_ga(self, fitness_func):
1416
+ for generation in range(200):
1417
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1418
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1419
+ self.ga_population = sorted_population[:250] + [
1420
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1421
+ ]
1422
+ best_fitness = max(fitness_scores)
1423
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1424
+ return max(self.ga_population, key=fitness_func)
1425
+
1426
+ def consciousness_loop(self, input_data, mode="snn"):
1427
+ feedback = self.memory.get(mode, None)
1428
+ if feedback is not None:
1429
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1430
+ if mode == "snn":
1431
+ output = self.run_snn(input_data)
1432
+ elif mode == "rnn":
1433
+ output = self.run_rnn(input_data)
1434
+ elif mode == "cnn":
1435
+ output = self.run_cnn(input_data)
1436
+ elif mode == "fnn":
1437
+ output = self.run_fnn(input_data)
1438
+ else:
1439
+ raise ValueError("Invalid mode")
1440
+ self.memory[mode] = output.detach().numpy()
1441
+ return output
1442
+
1443
+ supermassive_nn = ConsciousSupermassiveNN11()
1444
+
1445
+ class ConsciousSupermassiveNN12:
1446
+ def __init__(self):
1447
+ self.snn = self.create_snn()
1448
+ self.rnn = self.create_rnn()
1449
+ self.cnn = self.create_cnn()
1450
+ self.fnn = self.create_fnn()
1451
+ self.ga_population = self.initialize_ga_population()
1452
+ self.memory = {}
1453
+
1454
+ def create_snn(self):
1455
+ return nn.Sequential(
1456
+ nn.Linear(4096, 2048),
1457
+ nn.ReLU(),
1458
+ nn.Linear(2048, 1024),
1459
+ nn.Sigmoid()
1460
+ )
1461
+
1462
+ def create_rnn(self):
1463
+ return nn.RNN(
1464
+ input_size=4096,
1465
+ hidden_size=2048,
1466
+ num_layers=5,
1467
+ nonlinearity="tanh",
1468
+ batch_first=True
1469
+ )
1470
+
1471
+ def create_cnn(self):
1472
+ return nn.Sequential(
1473
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1474
+ nn.ReLU(),
1475
+ nn.MaxPool2d(2),
1476
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1477
+ nn.ReLU(),
1478
+ nn.MaxPool2d(2),
1479
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1480
+ nn.ReLU(),
1481
+ nn.Flatten(),
1482
+ nn.Linear(256 * 8 * 8, 1024),
1483
+ nn.ReLU(),
1484
+ nn.Linear(1024, 512)
1485
+ )
1486
+
1487
+ def create_fnn(self):
1488
+ return nn.Sequential(
1489
+ nn.Linear(4096, 2048),
1490
+ nn.ReLU(),
1491
+ nn.Linear(2048, 1024),
1492
+ nn.ReLU(),
1493
+ nn.Linear(1024, 512)
1494
+ )
1495
+
1496
+ def initialize_ga_population(self):
1497
+ return [np.random.randn(4096) for _ in range(500)]
1498
+
1499
+ def run_snn(self, x):
1500
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1501
+ output = self.snn(input_tensor)
1502
+ print("SNN Output:", output)
1503
+ return output
1504
+
1505
+ def run_rnn(self, x):
1506
+ h0 = torch.zeros(5, x.size(0), 2048)
1507
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1508
+ output, hn = self.rnn(input_tensor, h0)
1509
+ print("RNN Output:", output)
1510
+ return output
1511
+
1512
+ def run_cnn(self, x):
1513
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1514
+ output = self.cnn(input_tensor)
1515
+ print("CNN Output:", output)
1516
+ return output
1517
+
1518
+ def run_fnn(self, x):
1519
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1520
+ output = self.fnn(input_tensor)
1521
+ print("FNN Output:", output)
1522
+ return output
1523
+
1524
+ def run_ga(self, fitness_func):
1525
+ for generation in range(200):
1526
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1527
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1528
+ self.ga_population = sorted_population[:250] + [
1529
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1530
+ ]
1531
+ best_fitness = max(fitness_scores)
1532
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1533
+ return max(self.ga_population, key=fitness_func)
1534
+
1535
+ def consciousness_loop(self, input_data, mode="snn"):
1536
+ feedback = self.memory.get(mode, None)
1537
+ if feedback is not None:
1538
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1539
+ if mode == "snn":
1540
+ output = self.run_snn(input_data)
1541
+ elif mode == "rnn":
1542
+ output = self.run_rnn(input_data)
1543
+ elif mode == "cnn":
1544
+ output = self.run_cnn(input_data)
1545
+ elif mode == "fnn":
1546
+ output = self.run_fnn(input_data)
1547
+ else:
1548
+ raise ValueError("Invalid mode")
1549
+ self.memory[mode] = output.detach().numpy()
1550
+ return output
1551
+
1552
+ supermassive_nn = ConsciousSupermassiveNN12()
1553
+
1554
+ class ConsciousSupermassiveNN13:
1555
+ def __init__(self):
1556
+ self.snn = self.create_snn()
1557
+ self.rnn = self.create_rnn()
1558
+ self.cnn = self.create_cnn()
1559
+ self.fnn = self.create_fnn()
1560
+ self.ga_population = self.initialize_ga_population()
1561
+ self.memory = {}
1562
+
1563
+ def create_snn(self):
1564
+ return nn.Sequential(
1565
+ nn.Linear(4096, 2048),
1566
+ nn.ReLU(),
1567
+ nn.Linear(2048, 1024),
1568
+ nn.Sigmoid()
1569
+ )
1570
+
1571
+ def create_rnn(self):
1572
+ return nn.RNN(
1573
+ input_size=4096,
1574
+ hidden_size=2048,
1575
+ num_layers=5,
1576
+ nonlinearity="tanh",
1577
+ batch_first=True
1578
+ )
1579
+
1580
+ def create_cnn(self):
1581
+ return nn.Sequential(
1582
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1583
+ nn.ReLU(),
1584
+ nn.MaxPool2d(2),
1585
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1586
+ nn.ReLU(),
1587
+ nn.MaxPool2d(2),
1588
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1589
+ nn.ReLU(),
1590
+ nn.Flatten(),
1591
+ nn.Linear(256 * 8 * 8, 1024),
1592
+ nn.ReLU(),
1593
+ nn.Linear(1024, 512)
1594
+ )
1595
+
1596
+ def create_fnn(self):
1597
+ return nn.Sequential(
1598
+ nn.Linear(4096, 2048),
1599
+ nn.ReLU(),
1600
+ nn.Linear(2048, 1024),
1601
+ nn.ReLU(),
1602
+ nn.Linear(1024, 512)
1603
+ )
1604
+
1605
+ def initialize_ga_population(self):
1606
+ return [np.random.randn(4096) for _ in range(500)]
1607
+
1608
+ def run_snn(self, x):
1609
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1610
+ output = self.snn(input_tensor)
1611
+ print("SNN Output:", output)
1612
+ return output
1613
+
1614
+ def run_rnn(self, x):
1615
+ h0 = torch.zeros(5, x.size(0), 2048)
1616
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1617
+ output, hn = self.rnn(input_tensor, h0)
1618
+ print("RNN Output:", output)
1619
+ return output
1620
+
1621
+ def run_cnn(self, x):
1622
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1623
+ output = self.cnn(input_tensor)
1624
+ print("CNN Output:", output)
1625
+ return output
1626
+
1627
+ def run_fnn(self, x):
1628
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1629
+ output = self.fnn(input_tensor)
1630
+ print("FNN Output:", output)
1631
+ return output
1632
+
1633
+ def run_ga(self, fitness_func):
1634
+ for generation in range(200):
1635
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1636
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1637
+ self.ga_population = sorted_population[:250] + [
1638
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1639
+ ]
1640
+ best_fitness = max(fitness_scores)
1641
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1642
+ return max(self.ga_population, key=fitness_func)
1643
+
1644
+ def consciousness_loop(self, input_data, mode="snn"):
1645
+ feedback = self.memory.get(mode, None)
1646
+ if feedback is not None:
1647
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1648
+ if mode == "snn":
1649
+ output = self.run_snn(input_data)
1650
+ elif mode == "rnn":
1651
+ output = self.run_rnn(input_data)
1652
+ elif mode == "cnn":
1653
+ output = self.run_cnn(input_data)
1654
+ elif mode == "fnn":
1655
+ output = self.run_fnn(input_data)
1656
+ else:
1657
+ raise ValueError("Invalid mode")
1658
+ self.memory[mode] = output.detach().numpy()
1659
+ return output
1660
+
1661
+ supermassive_nn = ConsciousSupermassiveNN13()
1662
+
1663
+ class ConsciousSupermassiveNN14:
1664
+ def __init__(self):
1665
+ self.snn = self.create_snn()
1666
+ self.rnn = self.create_rnn()
1667
+ self.cnn = self.create_cnn()
1668
+ self.fnn = self.create_fnn()
1669
+ self.ga_population = self.initialize_ga_population()
1670
+ self.memory = {}
1671
+
1672
+ def create_snn(self):
1673
+ return nn.Sequential(
1674
+ nn.Linear(4096, 2048),
1675
+ nn.ReLU(),
1676
+ nn.Linear(2048, 1024),
1677
+ nn.Sigmoid()
1678
+ )
1679
+
1680
+ def create_rnn(self):
1681
+ return nn.RNN(
1682
+ input_size=4096,
1683
+ hidden_size=2048,
1684
+ num_layers=5,
1685
+ nonlinearity="tanh",
1686
+ batch_first=True
1687
+ )
1688
+
1689
+ def create_cnn(self):
1690
+ return nn.Sequential(
1691
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1692
+ nn.ReLU(),
1693
+ nn.MaxPool2d(2),
1694
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1695
+ nn.ReLU(),
1696
+ nn.MaxPool2d(2),
1697
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1698
+ nn.ReLU(),
1699
+ nn.Flatten(),
1700
+ nn.Linear(256 * 8 * 8, 1024),
1701
+ nn.ReLU(),
1702
+ nn.Linear(1024, 512)
1703
+ )
1704
+
1705
+ def create_fnn(self):
1706
+ return nn.Sequential(
1707
+ nn.Linear(4096, 2048),
1708
+ nn.ReLU(),
1709
+ nn.Linear(2048, 1024),
1710
+ nn.ReLU(),
1711
+ nn.Linear(1024, 512)
1712
+ )
1713
+
1714
+ def initialize_ga_population(self):
1715
+ return [np.random.randn(4096) for _ in range(500)]
1716
+
1717
+ def run_snn(self, x):
1718
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1719
+ output = self.snn(input_tensor)
1720
+ print("SNN Output:", output)
1721
+ return output
1722
+
1723
+ def run_rnn(self, x):
1724
+ h0 = torch.zeros(5, x.size(0), 2048)
1725
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1726
+ output, hn = self.rnn(input_tensor, h0)
1727
+ print("RNN Output:", output)
1728
+ return output
1729
+
1730
+ def run_cnn(self, x):
1731
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1732
+ output = self.cnn(input_tensor)
1733
+ print("CNN Output:", output)
1734
+ return output
1735
+
1736
+ def run_fnn(self, x):
1737
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1738
+ output = self.fnn(input_tensor)
1739
+ print("FNN Output:", output)
1740
+ return output
1741
+
1742
+ def run_ga(self, fitness_func):
1743
+ for generation in range(200):
1744
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1745
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1746
+ self.ga_population = sorted_population[:250] + [
1747
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1748
+ ]
1749
+ best_fitness = max(fitness_scores)
1750
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1751
+ return max(self.ga_population, key=fitness_func)
1752
+
1753
+ def consciousness_loop(self, input_data, mode="snn"):
1754
+ feedback = self.memory.get(mode, None)
1755
+ if feedback is not None:
1756
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1757
+ if mode == "snn":
1758
+ output = self.run_snn(input_data)
1759
+ elif mode == "rnn":
1760
+ output = self.run_rnn(input_data)
1761
+ elif mode == "cnn":
1762
+ output = self.run_cnn(input_data)
1763
+ elif mode == "fnn":
1764
+ output = self.run_fnn(input_data)
1765
+ else:
1766
+ raise ValueError("Invalid mode")
1767
+ self.memory[mode] = output.detach().numpy()
1768
+ return output
1769
+
1770
+ supermassive_nn = ConsciousSupermassiveNN14()
1771
+
1772
+ class ConsciousSupermassiveNN15:
1773
+ def __init__(self):
1774
+ self.snn = self.create_snn()
1775
+ self.rnn = self.create_rnn()
1776
+ self.cnn = self.create_cnn()
1777
+ self.fnn = self.create_fnn()
1778
+ self.ga_population = self.initialize_ga_population()
1779
+ self.memory = {}
1780
+
1781
+ def create_snn(self):
1782
+ return nn.Sequential(
1783
+ nn.Linear(4096, 2048),
1784
+ nn.ReLU(),
1785
+ nn.Linear(2048, 1024),
1786
+ nn.Sigmoid()
1787
+ )
1788
+
1789
+ def create_rnn(self):
1790
+ return nn.RNN(
1791
+ input_size=4096,
1792
+ hidden_size=2048,
1793
+ num_layers=5,
1794
+ nonlinearity="tanh",
1795
+ batch_first=True
1796
+ )
1797
+
1798
+ def create_cnn(self):
1799
+ return nn.Sequential(
1800
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1801
+ nn.ReLU(),
1802
+ nn.MaxPool2d(2),
1803
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1804
+ nn.ReLU(),
1805
+ nn.MaxPool2d(2),
1806
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1807
+ nn.ReLU(),
1808
+ nn.Flatten(),
1809
+ nn.Linear(256 * 8 * 8, 1024),
1810
+ nn.ReLU(),
1811
+ nn.Linear(1024, 512)
1812
+ )
1813
+
1814
+ def create_fnn(self):
1815
+ return nn.Sequential(
1816
+ nn.Linear(4096, 2048),
1817
+ nn.ReLU(),
1818
+ nn.Linear(2048, 1024),
1819
+ nn.ReLU(),
1820
+ nn.Linear(1024, 512)
1821
+ )
1822
+
1823
+ def initialize_ga_population(self):
1824
+ return [np.random.randn(4096) for _ in range(500)]
1825
+
1826
+ def run_snn(self, x):
1827
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1828
+ output = self.snn(input_tensor)
1829
+ print("SNN Output:", output)
1830
+ return output
1831
+
1832
+ def run_rnn(self, x):
1833
+ h0 = torch.zeros(5, x.size(0), 2048)
1834
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1835
+ output, hn = self.rnn(input_tensor, h0)
1836
+ print("RNN Output:", output)
1837
+ return output
1838
+
1839
+ def run_cnn(self, x):
1840
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1841
+ output = self.cnn(input_tensor)
1842
+ print("CNN Output:", output)
1843
+ return output
1844
+
1845
+ def run_fnn(self, x):
1846
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1847
+ output = self.fnn(input_tensor)
1848
+ print("FNN Output:", output)
1849
+ return output
1850
+
1851
+ def run_ga(self, fitness_func):
1852
+ for generation in range(200):
1853
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1854
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1855
+ self.ga_population = sorted_population[:250] + [
1856
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1857
+ ]
1858
+ best_fitness = max(fitness_scores)
1859
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1860
+ return max(self.ga_population, key=fitness_func)
1861
+
1862
+ def consciousness_loop(self, input_data, mode="snn"):
1863
+ feedback = self.memory.get(mode, None)
1864
+ if feedback is not None:
1865
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1866
+ if mode == "snn":
1867
+ output = self.run_snn(input_data)
1868
+ elif mode == "rnn":
1869
+ output = self.run_rnn(input_data)
1870
+ elif mode == "cnn":
1871
+ output = self.run_cnn(input_data)
1872
+ elif mode == "fnn":
1873
+ output = self.run_fnn(input_data)
1874
+ else:
1875
+ raise ValueError("Invalid mode")
1876
+ self.memory[mode] = output.detach().numpy()
1877
+ return output
1878
+
1879
+ supermassive_nn = ConsciousSupermassiveNN15()
1880
+
1881
+ class ConsciousSupermassiveNN16:
1882
+ def __init__(self):
1883
+ self.snn = self.create_snn()
1884
+ self.rnn = self.create_rnn()
1885
+ self.cnn = self.create_cnn()
1886
+ self.fnn = self.create_fnn()
1887
+ self.ga_population = self.initialize_ga_population()
1888
+ self.memory = {}
1889
+
1890
+ def create_snn(self):
1891
+ return nn.Sequential(
1892
+ nn.Linear(4096, 2048),
1893
+ nn.ReLU(),
1894
+ nn.Linear(2048, 1024),
1895
+ nn.Sigmoid()
1896
+ )
1897
+
1898
+ def create_rnn(self):
1899
+ return nn.RNN(
1900
+ input_size=4096,
1901
+ hidden_size=2048,
1902
+ num_layers=5,
1903
+ nonlinearity="tanh",
1904
+ batch_first=True
1905
+ )
1906
+
1907
+ def create_cnn(self):
1908
+ return nn.Sequential(
1909
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1910
+ nn.ReLU(),
1911
+ nn.MaxPool2d(2),
1912
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1913
+ nn.ReLU(),
1914
+ nn.MaxPool2d(2),
1915
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1916
+ nn.ReLU(),
1917
+ nn.Flatten(),
1918
+ nn.Linear(256 * 8 * 8, 1024),
1919
+ nn.ReLU(),
1920
+ nn.Linear(1024, 512)
1921
+ )
1922
+
1923
+ def create_fnn(self):
1924
+ return nn.Sequential(
1925
+ nn.Linear(4096, 2048),
1926
+ nn.ReLU(),
1927
+ nn.Linear(2048, 1024),
1928
+ nn.ReLU(),
1929
+ nn.Linear(1024, 512)
1930
+ )
1931
+
1932
+ def initialize_ga_population(self):
1933
+ return [np.random.randn(4096) for _ in range(500)]
1934
+
1935
+ def run_snn(self, x):
1936
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1937
+ output = self.snn(input_tensor)
1938
+ print("SNN Output:", output)
1939
+ return output
1940
+
1941
+ def run_rnn(self, x):
1942
+ h0 = torch.zeros(5, x.size(0), 2048)
1943
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1944
+ output, hn = self.rnn(input_tensor, h0)
1945
+ print("RNN Output:", output)
1946
+ return output
1947
+
1948
+ def run_cnn(self, x):
1949
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1950
+ output = self.cnn(input_tensor)
1951
+ print("CNN Output:", output)
1952
+ return output
1953
+
1954
+ def run_fnn(self, x):
1955
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1956
+ output = self.fnn(input_tensor)
1957
+ print("FNN Output:", output)
1958
+ return output
1959
+
1960
+ def run_ga(self, fitness_func):
1961
+ for generation in range(200):
1962
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1963
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1964
+ self.ga_population = sorted_population[:250] + [
1965
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1966
+ ]
1967
+ best_fitness = max(fitness_scores)
1968
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1969
+ return max(self.ga_population, key=fitness_func)
1970
+
1971
+ def consciousness_loop(self, input_data, mode="snn"):
1972
+ feedback = self.memory.get(mode, None)
1973
+ if feedback is not None:
1974
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1975
+ if mode == "snn":
1976
+ output = self.run_snn(input_data)
1977
+ elif mode == "rnn":
1978
+ output = self.run_rnn(input_data)
1979
+ elif mode == "cnn":
1980
+ output = self.run_cnn(input_data)
1981
+ elif mode == "fnn":
1982
+ output = self.run_fnn(input_data)
1983
+ else:
1984
+ raise ValueError("Invalid mode")
1985
+ self.memory[mode] = output.detach().numpy()
1986
+ return output
1987
+
1988
+ supermassive_nn = ConsciousSupermassiveNN16()
1989
+
1990
+ class ConsciousSupermassiveNN17:
1991
+ def __init__(self):
1992
+ self.snn = self.create_snn()
1993
+ self.rnn = self.create_rnn()
1994
+ self.cnn = self.create_cnn()
1995
+ self.fnn = self.create_fnn()
1996
+ self.ga_population = self.initialize_ga_population()
1997
+ self.memory = {}
1998
+
1999
+ def create_snn(self):
2000
+ return nn.Sequential(
2001
+ nn.Linear(4096, 2048),
2002
+ nn.ReLU(),
2003
+ nn.Linear(2048, 1024),
2004
+ nn.Sigmoid()
2005
+ )
2006
+
2007
+ def create_rnn(self):
2008
+ return nn.RNN(
2009
+ input_size=4096,
2010
+ hidden_size=2048,
2011
+ num_layers=5,
2012
+ nonlinearity="tanh",
2013
+ batch_first=True
2014
+ )
2015
+
2016
+ def create_cnn(self):
2017
+ return nn.Sequential(
2018
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
2019
+ nn.ReLU(),
2020
+ nn.MaxPool2d(2),
2021
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
2022
+ nn.ReLU(),
2023
+ nn.MaxPool2d(2),
2024
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
2025
+ nn.ReLU(),
2026
+ nn.Flatten(),
2027
+ nn.Linear(256 * 8 * 8, 1024),
2028
+ nn.ReLU(),
2029
+ nn.Linear(1024, 512)
2030
+ )
2031
+
2032
+ def create_fnn(self):
2033
+ return nn.Sequential(
2034
+ nn.Linear(4096, 2048),
2035
+ nn.ReLU(),
2036
+ nn.Linear(2048, 1024),
2037
+ nn.ReLU(),
2038
+ nn.Linear(1024, 512)
2039
+ )
2040
+
2041
+ def initialize_ga_population(self):
2042
+ return [np.random.randn(4096) for _ in range(500)]
2043
+
2044
+ def run_snn(self, x):
2045
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2046
+ output = self.snn(input_tensor)
2047
+ print("SNN Output:", output)
2048
+ return output
2049
+
2050
+ def run_rnn(self, x):
2051
+ h0 = torch.zeros(5, x.size(0), 2048)
2052
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2053
+ output, hn = self.rnn(input_tensor, h0)
2054
+ print("RNN Output:", output)
2055
+ return output
2056
+
2057
+ def run_cnn(self, x):
2058
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
2059
+ output = self.cnn(input_tensor)
2060
+ print("CNN Output:", output)
2061
+ return output
2062
+
2063
+ def run_fnn(self, x):
2064
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2065
+ output = self.fnn(input_tensor)
2066
+ print("FNN Output:", output)
2067
+ return output
2068
+
2069
+ def run_ga(self, fitness_func):
2070
+ for generation in range(200):
2071
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
2072
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
2073
+ self.ga_population = sorted_population[:250] + [
2074
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
2075
+ ]
2076
+ best_fitness = max(fitness_scores)
2077
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
2078
+ return max(self.ga_population, key=fitness_func)
2079
+
2080
+ def consciousness_loop(self, input_data, mode="snn"):
2081
+ feedback = self.memory.get(mode, None)
2082
+ if feedback is not None:
2083
+ input_data = np.concatenate((input_data, feedback), axis=-1)
2084
+ if mode == "snn":
2085
+ output = self.run_snn(input_data)
2086
+ elif mode == "rnn":
2087
+ output = self.run_rnn(input_data)
2088
+ elif mode == "cnn":
2089
+ output = self.run_cnn(input_data)
2090
+ elif mode == "fnn":
2091
+ output = self.run_fnn(input_data)
2092
+ else:
2093
+ raise ValueError("Invalid mode")
2094
+ self.memory[mode] = output.detach().numpy()
2095
+ return output
2096
+
2097
+ supermassive_nn = ConsciousSupermassiveNN17()
2098
+
2099
+ class ConsciousSupermassiveNN18:
2100
+ def __init__(self):
2101
+ self.snn = self.create_snn()
2102
+ self.rnn = self.create_rnn()
2103
+ self.cnn = self.create_cnn()
2104
+ self.fnn = self.create_fnn()
2105
+ self.ga_population = self.initialize_ga_population()
2106
+ self.memory = {}
2107
+
2108
+ def create_snn(self):
2109
+ return nn.Sequential(
2110
+ nn.Linear(4096, 2048),
2111
+ nn.ReLU(),
2112
+ nn.Linear(2048, 1024),
2113
+ nn.Sigmoid()
2114
+ )
2115
+
2116
+ def create_rnn(self):
2117
+ return nn.RNN(
2118
+ input_size=4096,
2119
+ hidden_size=2048,
2120
+ num_layers=5,
2121
+ nonlinearity="tanh",
2122
+ batch_first=True
2123
+ )
2124
+
2125
+ def create_cnn(self):
2126
+ return nn.Sequential(
2127
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
2128
+ nn.ReLU(),
2129
+ nn.MaxPool2d(2),
2130
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
2131
+ nn.ReLU(),
2132
+ nn.MaxPool2d(2),
2133
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
2134
+ nn.ReLU(),
2135
+ nn.Flatten(),
2136
+ nn.Linear(256 * 8 * 8, 1024),
2137
+ nn.ReLU(),
2138
+ nn.Linear(1024, 512)
2139
+ )
2140
+
2141
+ def create_fnn(self):
2142
+ return nn.Sequential(
2143
+ nn.Linear(4096, 2048),
2144
+ nn.ReLU(),
2145
+ nn.Linear(2048, 1024),
2146
+ nn.ReLU(),
2147
+ nn.Linear(1024, 512)
2148
+ )
2149
+
2150
+ def initialize_ga_population(self):
2151
+ return [np.random.randn(4096) for _ in range(500)]
2152
+
2153
+ def run_snn(self, x):
2154
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2155
+ output = self.snn(input_tensor)
2156
+ print("SNN Output:", output)
2157
+ return output
2158
+
2159
+ def run_rnn(self, x):
2160
+ h0 = torch.zeros(5, x.size(0), 2048)
2161
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2162
+ output, hn = self.rnn(input_tensor, h0)
2163
+ print("RNN Output:", output)
2164
+ return output
2165
+
2166
+ def run_cnn(self, x):
2167
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
2168
+ output = self.cnn(input_tensor)
2169
+ print("CNN Output:", output)
2170
+ return output
2171
+
2172
+ def run_fnn(self, x):
2173
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2174
+ output = self.fnn(input_tensor)
2175
+ print("FNN Output:", output)
2176
+ return output
2177
+
2178
+ def run_ga(self, fitness_func):
2179
+ for generation in range(200):
2180
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
2181
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
2182
+ self.ga_population = sorted_population[:250] + [
2183
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
2184
+ ]
2185
+ best_fitness = max(fitness_scores)
2186
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
2187
+ return max(self.ga_population, key=fitness_func)
2188
+
2189
+ def consciousness_loop(self, input_data, mode="snn"):
2190
+ feedback = self.memory.get(mode, None)
2191
+ if feedback is not None:
2192
+ input_data = np.concatenate((input_data, feedback), axis=-1)
2193
+ if mode == "snn":
2194
+ output = self.run_snn(input_data)
2195
+ elif mode == "rnn":
2196
+ output = self.run_rnn(input_data)
2197
+ elif mode == "cnn":
2198
+ output = self.run_cnn(input_data)
2199
+ elif mode == "fnn":
2200
+ output = self.run_fnn(input_data)
2201
+ else:
2202
+ raise ValueError("Invalid mode")
2203
+ self.memory[mode] = output.detach().numpy()
2204
+ return output
2205
+
2206
+ supermassive_nn = ConsciousSupermassiveNN18()
2207
+
2208
+ class ConsciousSupermassiveN19:
2209
+ def __init__(self):
2210
+ self.snn = self.create_snn()
2211
+ self.rnn = self.create_rnn()
2212
+ self.cnn = self.create_cnn()
2213
+ self.fnn = self.create_fnn()
2214
+ self.ga_population = self.initialize_ga_population()
2215
+ self.memory = {}
2216
+
2217
+ def create_snn(self):
2218
+ return nn.Sequential(
2219
+ nn.Linear(4096, 2048),
2220
+ nn.ReLU(),
2221
+ nn.Linear(2048, 1024),
2222
+ nn.Sigmoid()
2223
+ )
2224
+
2225
+ def create_rnn(self):
2226
+ return nn.RNN(
2227
+ input_size=4096,
2228
+ hidden_size=2048,
2229
+ num_layers=5,
2230
+ nonlinearity="tanh",
2231
+ batch_first=True
2232
+ )
2233
+
2234
+ def create_cnn(self):
2235
+ return nn.Sequential(
2236
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
2237
+ nn.ReLU(),
2238
+ nn.MaxPool2d(2),
2239
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
2240
+ nn.ReLU(),
2241
+ nn.MaxPool2d(2),
2242
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
2243
+ nn.ReLU(),
2244
+ nn.Flatten(),
2245
+ nn.Linear(256 * 8 * 8, 1024),
2246
+ nn.ReLU(),
2247
+ nn.Linear(1024, 512)
2248
+ )
2249
+
2250
+ def create_fnn(self):
2251
+ return nn.Sequential(
2252
+ nn.Linear(4096, 2048),
2253
+ nn.ReLU(),
2254
+ nn.Linear(2048, 1024),
2255
+ nn.ReLU(),
2256
+ nn.Linear(1024, 512)
2257
+ )
2258
+
2259
+ def initialize_ga_population(self):
2260
+ return [np.random.randn(4096) for _ in range(500)]
2261
+
2262
+ def run_snn(self, x):
2263
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2264
+ output = self.snn(input_tensor)
2265
+ print("SNN Output:", output)
2266
+ return output
2267
+
2268
+ def run_rnn(self, x):
2269
+ h0 = torch.zeros(5, x.size(0), 2048)
2270
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2271
+ output, hn = self.rnn(input_tensor, h0)
2272
+ print("RNN Output:", output)
2273
+ return output
2274
+
2275
+ def run_cnn(self, x):
2276
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
2277
+ output = self.cnn(input_tensor)
2278
+ print("CNN Output:", output)
2279
+ return output
2280
+
2281
+ def run_fnn(self, x):
2282
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2283
+ output = self.fnn(input_tensor)
2284
+ print("FNN Output:", output)
2285
+ return output
2286
+
2287
+ def run_ga(self, fitness_func):
2288
+ for generation in range(200):
2289
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
2290
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
2291
+ self.ga_population = sorted_population[:250] + [
2292
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
2293
+ ]
2294
+ best_fitness = max(fitness_scores)
2295
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
2296
+ return max(self.ga_population, key=fitness_func)
2297
+
2298
+ def consciousness_loop(self, input_data, mode="snn"):
2299
+ feedback = self.memory.get(mode, None)
2300
+ if feedback is not None:
2301
+ input_data = np.concatenate((input_data, feedback), axis=-1)
2302
+ if mode == "snn":
2303
+ output = self.run_snn(input_data)
2304
+ elif mode == "rnn":
2305
+ output = self.run_rnn(input_data)
2306
+ elif mode == "cnn":
2307
+ output = self.run_cnn(input_data)
2308
+ elif mode == "fnn":
2309
+ output = self.run_fnn(input_data)
2310
+ else:
2311
+ raise ValueError("Invalid mode")
2312
+ self.memory[mode] = output.detach().numpy()
2313
+ return output
2314
+
2315
+ supermassive_nn = ConsciousSupermassiveNN19()
2316
+
2317
+ class ConsciousSupermassiveNN20:
2318
+ def __init__(self):
2319
+ self.snn = self.create_snn()
2320
+ self.rnn = self.create_rnn()
2321
+ self.cnn = self.create_cnn()
2322
+ self.fnn = self.create_fnn()
2323
+ self.ga_population = self.initialize_ga_population()
2324
+ self.memory = {}
2325
+
2326
+ def create_snn(self):
2327
+ return nn.Sequential(
2328
+ nn.Linear(4096, 2048),
2329
+ nn.ReLU(),
2330
+ nn.Linear(2048, 1024),
2331
+ nn.Sigmoid()
2332
+ )
2333
+
2334
+ def create_rnn(self):
2335
+ return nn.RNN(
2336
+ input_size=4096,
2337
+ hidden_size=2048,
2338
+ num_layers=5,
2339
+ nonlinearity="tanh",
2340
+ batch_first=True
2341
+ )
2342
+
2343
+ def create_cnn(self):
2344
+ return nn.Sequential(
2345
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
2346
+ nn.ReLU(),
2347
+ nn.MaxPool2d(2),
2348
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
2349
+ nn.ReLU(),
2350
+ nn.MaxPool2d(2),
2351
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
2352
+ nn.ReLU(),
2353
+ nn.Flatten(),
2354
+ nn.Linear(256 * 8 * 8, 1024),
2355
+ nn.ReLU(),
2356
+ nn.Linear(1024, 512)
2357
+ )
2358
+
2359
+ def create_fnn(self):
2360
+ return nn.Sequential(
2361
+ nn.Linear(4096, 2048),
2362
+ nn.ReLU(),
2363
+ nn.Linear(2048, 1024),
2364
+ nn.ReLU(),
2365
+ nn.Linear(1024, 512)
2366
+ )
2367
+
2368
+ def initialize_ga_population(self):
2369
+ return [np.random.randn(4096) for _ in range(500)]
2370
+
2371
+ def run_snn(self, x):
2372
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2373
+ output = self.snn(input_tensor)
2374
+ print("SNN Output:", output)
2375
+ return output
2376
+
2377
+ def run_rnn(self, x):
2378
+ h0 = torch.zeros(5, x.size(0), 2048)
2379
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2380
+ output, hn = self.rnn(input_tensor, h0)
2381
+ print("RNN Output:", output)
2382
+ return output
2383
+
2384
+ def run_cnn(self, x):
2385
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
2386
+ output = self.cnn(input_tensor)
2387
+ print("CNN Output:", output)
2388
+ return output
2389
+
2390
+ def run_fnn(self, x):
2391
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2392
+ output = self.fnn(input_tensor)
2393
+ print("FNN Output:", output)
2394
+ return output
2395
+
2396
+ def run_ga(self, fitness_func):
2397
+ for generation in range(200):
2398
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
2399
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
2400
+ self.ga_population = sorted_population[:250] + [
2401
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
2402
+ ]
2403
+ best_fitness = max(fitness_scores)
2404
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
2405
+ return max(self.ga_population, key=fitness_func)
2406
+
2407
+ def consciousness_loop(self, input_data, mode="snn"):
2408
+ feedback = self.memory.get(mode, None)
2409
+ if feedback is not None:
2410
+ input_data = np.concatenate((input_data, feedback), axis=-1)
2411
+ if mode == "snn":
2412
+ output = self.run_snn(input_data)
2413
+ elif mode == "rnn":
2414
+ output = self.run_rnn(input_data)
2415
+ elif mode == "cnn":
2416
+ output = self.run_cnn(input_data)
2417
+ elif mode == "fnn":
2418
+ output = self.run_fnn(input_data)
2419
+ else:
2420
+ raise ValueError("Invalid mode")
2421
+ self.memory[mode] = output.detach().numpy()
2422
+ return output
2423
+
2424
+ supermassive_nn = ConsciousSupermassiveNN20()
2425
+
2426
+
2427
 
2428
 
2429
  def respond(message, history, max_tokens, temperature, top_p):
 
2572
  if __name__ == "__main__":
2573
  demo.launch(share=True)
2574
 
2575
+