H
File size: 3,987 Bytes
fc94474
 
 
c615bd3
 
f858622
71ddc08
c615bd3
15b3be2
 
f858622
15b3be2
b521a07
13b4845
f858622
c615bd3
ebb3fac
89c43c2
393eb3e
ebb3fac
fc94474
 
 
 
 
 
da47a70
 
fc94474
 
 
 
da47a70
fc94474
 
 
 
 
 
 
 
 
da47a70
 
fc94474
 
 
 
 
 
 
 
 
da47a70
fc94474
 
 
da47a70
 
fc94474
 
 
da47a70
fc94474
 
 
 
 
 
da47a70
fc94474
 
 
 
da47a70
fc94474
7f08411
c615bd3
 
 
 
 
 
 
ebb3fac
 
c615bd3
 
 
 
 
 
 
 
 
 
 
15b3be2
c615bd3
 
 
 
 
 
 
15b3be2
c615bd3
 
 
fc94474
c615bd3
1e23fd6
 
 
041913e
1e23fd6
 
 
c615bd3
1e23fd6
4ed281a
1e23fd6
c615bd3
05cfa5a
c615bd3
 
 
1e23fd6
cfbc2ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
from huggingface_hub import InferenceClient
from llama_cpp import Llama
import spaces

# Initialize the InferenceClient
client = InferenceClient()

llm = Llama.from_pretrained(
    repo_id="bartowski/perplexity-ai_r1-1776-distill-llama-70b-GGUF",
    filename="perplexity-ai_r1-1776-distill-llama-70b-IQ4_NL.gguf",
)

# Fixed system message
SYSTEM_MESSAGE = """You are H, an artificial reasoning inteligence(AIR) created by the ACC(Algorithmic Computer-generated Consciousness).
"""

# RNN Model
class RNNModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, num_layers=1):
        super(RNNModel, self).__init__()
        self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        h0 = torch.zeros(1, x.size(0), self.rnn.hidden_size).to(x.device)
        out, _ = self.rnn(x, h0)
        out = self.fc(out[:, -1, :])  # Get the last output
        return out

# CNN Model
class CNNModel(nn.Module):
    def __init__(self, num_classes):
        super(CNNModel, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.fc1 = nn.Linear(32 * 8 * 8, 128)
        self.fc2 = nn.Linear(128, num_classes)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 32 * 8 * 8)  # Flatten
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# NN Model (Feedforward Neural Network)
class NNModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(NNModel, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# PHI Model (Example: Softmax-Based Regression)
class PHIModel(nn.Module):
    def __init__(self, input_size, output_size):
        super(PHIModel, self).__init__()
        self.fc = nn.Linear(input_size, output_size)
        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):
        x = self.fc(x)
        x = self.softmax(x)
        return x

# Chatbot Response Logic

def respond(
    message,
    history: list[tuple[str, str]],
    max_tokens,
    temperature,
    top_p,
):
    # Use fixed system message
    messages = [{"role": "system", "content": SYSTEM_MESSAGE}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    # Use the client to get the chat completion
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message['choices'][0]['delta']['content']
        response += token
        yield response

# Gradio Chat Interface with Models
demo = gr.ChatInterface(
    fn=respond,
    type="messages",
    chatbot=gr.Chatbot(
        type="messages",
        label="🟢H🟢", 
        placeholder="🟢-Hi, I'm H-🟢", 
    ),
    additional_inputs=[
        gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="📏Maximum Response Length📏"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.3, step=0.1, label="👨‍🎨🎨Creativity🎨👨‍🎨"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="🧠⚡️Neural Activity⚡️🧠")
    ],
    theme=gr.themes.Ocean()
)

if __name__ == "__main__":
    demo.launch(share=True)