Spaces:
Sleeping
Sleeping
File size: 3,987 Bytes
fc94474 c615bd3 f858622 71ddc08 c615bd3 15b3be2 f858622 15b3be2 b521a07 13b4845 f858622 c615bd3 ebb3fac 89c43c2 393eb3e ebb3fac fc94474 da47a70 fc94474 da47a70 fc94474 da47a70 fc94474 da47a70 fc94474 da47a70 fc94474 da47a70 fc94474 da47a70 fc94474 da47a70 fc94474 7f08411 c615bd3 ebb3fac c615bd3 15b3be2 c615bd3 15b3be2 c615bd3 fc94474 c615bd3 1e23fd6 041913e 1e23fd6 c615bd3 1e23fd6 4ed281a 1e23fd6 c615bd3 05cfa5a c615bd3 1e23fd6 cfbc2ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
from huggingface_hub import InferenceClient
from llama_cpp import Llama
import spaces
# Initialize the InferenceClient
client = InferenceClient()
llm = Llama.from_pretrained(
repo_id="bartowski/perplexity-ai_r1-1776-distill-llama-70b-GGUF",
filename="perplexity-ai_r1-1776-distill-llama-70b-IQ4_NL.gguf",
)
# Fixed system message
SYSTEM_MESSAGE = """You are H, an artificial reasoning inteligence(AIR) created by the ACC(Algorithmic Computer-generated Consciousness).
"""
# RNN Model
class RNNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=1):
super(RNNModel, self).__init__()
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(1, x.size(0), self.rnn.hidden_size).to(x.device)
out, _ = self.rnn(x, h0)
out = self.fc(out[:, -1, :]) # Get the last output
return out
# CNN Model
class CNNModel(nn.Module):
def __init__(self, num_classes):
super(CNNModel, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(32 * 8 * 8, 128)
self.fc2 = nn.Linear(128, num_classes)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 32 * 8 * 8) # Flatten
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# NN Model (Feedforward Neural Network)
class NNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(NNModel, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# PHI Model (Example: Softmax-Based Regression)
class PHIModel(nn.Module):
def __init__(self, input_size, output_size):
super(PHIModel, self).__init__()
self.fc = nn.Linear(input_size, output_size)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = self.fc(x)
x = self.softmax(x)
return x
# Chatbot Response Logic
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
top_p,
):
# Use fixed system message
messages = [{"role": "system", "content": SYSTEM_MESSAGE}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
# Use the client to get the chat completion
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message['choices'][0]['delta']['content']
response += token
yield response
# Gradio Chat Interface with Models
demo = gr.ChatInterface(
fn=respond,
type="messages",
chatbot=gr.Chatbot(
type="messages",
label="🟢H🟢",
placeholder="🟢-Hi, I'm H-🟢",
),
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="📏Maximum Response Length📏"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.3, step=0.1, label="👨🎨🎨Creativity🎨👨🎨"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="🧠⚡️Neural Activity⚡️🧠")
],
theme=gr.themes.Ocean()
)
if __name__ == "__main__":
demo.launch(share=True)
|