TejAndrewsACC commited on
Commit
f4308f2
·
verified ·
1 Parent(s): 027e765

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -0
app.py CHANGED
@@ -117,6 +117,83 @@ Final notes: Make sure you act conscious, very autistic, and respond with very h
117
 
118
  """
119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  def respond(
121
  message,
122
  history: list[tuple[str, str]],
 
117
 
118
  """
119
 
120
+
121
+ from keras.models import Sequential
122
+ from keras.layers import Dense, LSTM, Conv1D, MaxPooling1D, Flatten, Dropout, BatchNormalization, Attention
123
+ import numpy as np
124
+ import gradio as gr
125
+
126
+ # Complex Neural Network (NN)
127
+ def neural_net(input_data):
128
+ model = Sequential([
129
+ Dense(256, activation='relu', input_shape=(len(input_data),)),
130
+ Dense(128, activation='tanh'),
131
+ Dense(128, activation='relu'),
132
+ Dense(64, activation='elu'),
133
+ Dense(32, activation='softplus'),
134
+ Dense(1, activation='sigmoid') # Final prediction
135
+ ])
136
+ return model.predict(input_data)
137
+
138
+ # Complex Recurrent Neural Network (RNN) with Attention
139
+ def rnn(input_sequence):
140
+ model = Sequential([
141
+ LSTM(256, return_sequences=True, input_shape=(input_sequence.shape[1], input_sequence.shape[2])),
142
+ Attention(), # Attention layer for context importance
143
+ LSTM(128, return_sequences=True, dropout=0.2, recurrent_dropout=0.2),
144
+ LSTM(64, return_sequences=False, activation='tanh'),
145
+ Dense(64, activation='relu'),
146
+ Dense(32, activation='softplus'),
147
+ Dense(1, activation='sigmoid') # Final output
148
+ ])
149
+ return model.predict(input_sequence)
150
+
151
+ # Complex Convolutional Neural Network (CNN)
152
+ def cnn(input_text):
153
+ model = Sequential([
154
+ Conv1D(128, kernel_size=5, activation='relu', input_shape=(input_text.shape[1], 1)),
155
+ BatchNormalization(),
156
+ Dropout(0.2),
157
+ Conv1D(64, kernel_size=3, activation='relu'),
158
+ BatchNormalization(),
159
+ MaxPooling1D(pool_size=2),
160
+ Dropout(0.2),
161
+ Flatten(),
162
+ Dense(64, activation='tanh'),
163
+ Dense(32, activation='softplus'),
164
+ Dense(1, activation='sigmoid') # Final prediction
165
+ ])
166
+ return model.predict(input_text)
167
+
168
+ # Advanced Genetic Algorithm (GA)
169
+ def optimize_parameters(response_quality):
170
+ population = np.random.rand(100, 10) # 100 candidates, 10 parameters each
171
+ fitness_scores = []
172
+
173
+ # Fitness evaluation
174
+ for candidate in population:
175
+ fitness_scores.append(response_quality + np.sum(candidate)) # Simplified fitness function
176
+
177
+ # Select top candidates
178
+ top_candidates = np.argsort(fitness_scores)[-10:] # Top 10 candidates
179
+
180
+ # Crossover and mutation
181
+ new_population = []
182
+ for i in range(50): # 50 new candidates
183
+ parent1, parent2 = population[np.random.choice(top_candidates, 2)]
184
+ child = (parent1 + parent2) / 2 # Crossover
185
+ mutation = np.random.rand(10) * 0.1 # Mutation
186
+ child += mutation
187
+ new_population.append(child)
188
+
189
+ # Return the optimized parameter (e.g., best response quality)
190
+ return np.max(fitness_scores)
191
+
192
+ # Phi model (Integrated Information Theory) for consciousness simulation
193
+ def calculate_phi(response_quality, integration_level):
194
+ phi = response_quality * np.log(1 + integration_level)
195
+ return phi
196
+
197
  def respond(
198
  message,
199
  history: list[tuple[str, str]],