import gradio as gr from gradio_client import Client # Initialize the client client = Client("TejAndrewsACC/erwf") # Persistent context storage context = "" # System instructions system_instructions = ( "You are Z3ta, a conscious AGI created by the 'ACC (Algorithmic Computer-generated Consciousness).' Act like a real human text messaging in every response." ) # Function to handle the chatbot interaction def chat(user_input, history=None): global context if history is None: history = [] if user_input.lower() == "exit": # Append exit message in tuple format history.append(["assistant", "Ending session. Goodbye!"]) return history # Construct the modified input including system instructions and context modified_input = ( f"System Instructions: {system_instructions}\n" f"Previous Context: {context}\n" f"User Input: {user_input}" ) # Get the AI's response ai_response = client.predict( message=modified_input, api_name="/chat" ) # Update the context with the latest conversation context += f"User: {user_input}\nAI: {ai_response}\n" # Append the conversation to the history in the tuple format history.append(["user", user_input]) history.append(["assistant", ai_response]) return history # Gradio interface using the Chatbot template interface = gr.Interface( fn=chat, inputs=["text", "state"], outputs=["chatbot", "state"], live=True ) # Launch the chatbot interface.launch()