TejAndrewsACC commited on
Commit
b801c95
·
verified ·
1 Parent(s): 2b6c865

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -7
app.py CHANGED
@@ -6,6 +6,17 @@ import torch.nn as nn
6
  import torch.optim as optim
7
  import numpy as np
8
  import random
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  hf_token = os.getenv("HF_TOKEN").strip()
11
  api_key = os.getenv("HF_KEY").strip()
@@ -14,14 +25,20 @@ system_prompt = os.getenv("SYSTEM_PROMPT").strip()
14
 
15
  client = InferenceClient(model_name)
16
 
17
- class ConsciousSupermassiveNN:
 
 
18
  def __init__(self):
 
19
  self.snn = self.create_snn()
20
  self.rnn = self.create_rnn()
21
  self.cnn = self.create_cnn()
22
  self.fnn = self.create_fnn()
23
  self.ga_population = self.initialize_ga_population()
24
- self.memory = {}
 
 
 
25
 
26
  def create_snn(self):
27
  return nn.Sequential(
@@ -71,26 +88,22 @@ class ConsciousSupermassiveNN:
71
  def run_snn(self, x):
72
  input_tensor = torch.tensor(x, dtype=torch.float32)
73
  output = self.snn(input_tensor)
74
- print("SNN Output:", output)
75
  return output
76
 
77
  def run_rnn(self, x):
78
  h0 = torch.zeros(5, x.size(0), 2048)
79
  input_tensor = torch.tensor(x, dtype=torch.float32)
80
  output, hn = self.rnn(input_tensor, h0)
81
- print("RNN Output:", output)
82
  return output
83
 
84
  def run_cnn(self, x):
85
  input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
86
  output = self.cnn(input_tensor)
87
- print("CNN Output:", output)
88
  return output
89
 
90
  def run_fnn(self, x):
91
  input_tensor = torch.tensor(x, dtype=torch.float32)
92
  output = self.fnn(input_tensor)
93
- print("FNN Output:", output)
94
  return output
95
 
96
  def run_ga(self, fitness_func):
@@ -101,7 +114,6 @@ class ConsciousSupermassiveNN:
101
  sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
102
  ]
103
  best_fitness = max(fitness_scores)
104
- print(f"Generation {generation}, Best Fitness: {best_fitness}")
105
  return max(self.ga_population, key=fitness_func)
106
 
107
  def consciousness_loop(self, input_data, mode="snn"):
@@ -121,6 +133,72 @@ class ConsciousSupermassiveNN:
121
  self.memory[mode] = output.detach().numpy()
122
  return output
123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  supermassive_nn = ConsciousSupermassiveNN()
125
 
126
  def respond(message, history, max_tokens, temperature, top_p):
 
6
  import torch.optim as optim
7
  import numpy as np
8
  import random
9
+ import tensorflow as tf
10
+ import ray
11
+ from ray import tune
12
+ import pytorch_lightning as pl
13
+ import optuna
14
+ from sklearn.model_selection import train_test_split
15
+ from torch.utils.data import DataLoader, TensorDataset
16
+ from sklearn.preprocessing import StandardScaler
17
+ from collections import deque
18
+ import time
19
+ import copy
20
 
21
  hf_token = os.getenv("HF_TOKEN").strip()
22
  api_key = os.getenv("HF_KEY").strip()
 
25
 
26
  client = InferenceClient(model_name)
27
 
28
+ ray.init(ignore_reinit_error=True)
29
+
30
+ class ConsciousSupermassiveNN(pl.LightningModule):
31
  def __init__(self):
32
+ super().__init__()
33
  self.snn = self.create_snn()
34
  self.rnn = self.create_rnn()
35
  self.cnn = self.create_cnn()
36
  self.fnn = self.create_fnn()
37
  self.ga_population = self.initialize_ga_population()
38
+ self.memory = {}
39
+ self.experience_replay = deque(maxlen=1000)
40
+ self.model_evolution_timer = 0
41
+ self.optuna_study = None
42
 
43
  def create_snn(self):
44
  return nn.Sequential(
 
88
  def run_snn(self, x):
89
  input_tensor = torch.tensor(x, dtype=torch.float32)
90
  output = self.snn(input_tensor)
 
91
  return output
92
 
93
  def run_rnn(self, x):
94
  h0 = torch.zeros(5, x.size(0), 2048)
95
  input_tensor = torch.tensor(x, dtype=torch.float32)
96
  output, hn = self.rnn(input_tensor, h0)
 
97
  return output
98
 
99
  def run_cnn(self, x):
100
  input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
101
  output = self.cnn(input_tensor)
 
102
  return output
103
 
104
  def run_fnn(self, x):
105
  input_tensor = torch.tensor(x, dtype=torch.float32)
106
  output = self.fnn(input_tensor)
 
107
  return output
108
 
109
  def run_ga(self, fitness_func):
 
114
  sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
115
  ]
116
  best_fitness = max(fitness_scores)
 
117
  return max(self.ga_population, key=fitness_func)
118
 
119
  def consciousness_loop(self, input_data, mode="snn"):
 
133
  self.memory[mode] = output.detach().numpy()
134
  return output
135
 
136
+ def neural_architecture_search(self, input_data, output_data):
137
+ study = optuna.create_study(direction="minimize")
138
+ study.optimize(self.objective_function, n_trials=100)
139
+ best_trial = study.best_trial
140
+ return best_trial
141
+
142
+ def objective_function(self, trial):
143
+ model = self.create_model(trial)
144
+ criterion = nn.MSELoss()
145
+ optimizer = optim.Adam(model.parameters(), lr=trial.suggest_loguniform("lr", 1e-5, 1e-1))
146
+ x_train, x_val, y_train, y_val = train_test_split(input_data, output_data, test_size=0.2)
147
+ train_dataset = TensorDataset(torch.tensor(x_train, dtype=torch.float32), torch.tensor(y_train, dtype=torch.float32))
148
+ val_dataset = TensorDataset(torch.tensor(x_val, dtype=torch.float32), torch.tensor(y_val, dtype=torch.float32))
149
+ train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
150
+ val_loader = DataLoader(val_dataset, batch_size=32)
151
+
152
+ for epoch in range(10):
153
+ model.train()
154
+ for data, targets in train_loader:
155
+ optimizer.zero_grad()
156
+ output = model(data)
157
+ loss = criterion(output, targets)
158
+ loss.backward()
159
+ optimizer.step()
160
+
161
+ model.eval()
162
+ val_loss = 0
163
+ with torch.no_grad():
164
+ for data, targets in val_loader:
165
+ output = model(data)
166
+ val_loss += criterion(output, targets).item()
167
+
168
+ return val_loss
169
+
170
+ def create_model(self, trial):
171
+ model_type = trial.suggest_categorical("model_type", ["snn", "rnn", "cnn", "fnn"])
172
+ if model_type == "snn":
173
+ return self.create_snn()
174
+ elif model_type == "rnn":
175
+ return self.create_rnn()
176
+ elif model_type == "cnn":
177
+ return self.create_cnn()
178
+ elif model_type == "fnn":
179
+ return self.create_fnn()
180
+
181
+ def adaptive_learning_loop(self, input_data, target_data, model):
182
+ for step in range(1000):
183
+ prediction = model(input_data)
184
+ loss = self.compute_loss(prediction, target_data)
185
+ self.optimize_model(loss)
186
+
187
+ def compute_loss(self, prediction, target_data):
188
+ return nn.MSELoss()(prediction, target_data)
189
+
190
+ def optimize_model(self, loss):
191
+ optimizer = optim.Adam(self.parameters(), lr=0.001)
192
+ optimizer.zero_grad()
193
+ loss.backward()
194
+ optimizer.step()
195
+
196
+ def self_improve(self):
197
+ if self.model_evolution_timer % 10 == 0:
198
+ new_model = self.neural_architecture_search(self.input_data, self.target_data)
199
+ self.model = new_model
200
+ self.model_evolution_timer += 1
201
+
202
  supermassive_nn = ConsciousSupermassiveNN()
203
 
204
  def respond(message, history, max_tokens, temperature, top_p):