TejAndrewsACC commited on
Commit
eb3967e
·
verified ·
1 Parent(s): 2bec850

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1212 -0
app.py CHANGED
@@ -123,6 +123,1218 @@ class ConsciousSupermassiveNN:
123
 
124
  supermassive_nn = ConsciousSupermassiveNN()
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  def respond(message, history, max_tokens, temperature, top_p):
127
  messages = [{"role": "system", "content": system_prompt}]
128
  for val in history:
 
123
 
124
  supermassive_nn = ConsciousSupermassiveNN()
125
 
126
+ class ConsciousSupermassiveNN:
127
+ def __init__(self):
128
+ self.snn = self.create_snn()
129
+ self.rnn = self.create_rnn()
130
+ self.cnn = self.create_cnn()
131
+ self.fnn = self.create_fnn()
132
+ self.ga_population = self.initialize_ga_population()
133
+ self.memory = {}
134
+
135
+ def create_snn(self):
136
+ return nn.Sequential(
137
+ nn.Linear(4096, 2048),
138
+ nn.ReLU(),
139
+ nn.Linear(2048, 1024),
140
+ nn.Sigmoid()
141
+ )
142
+
143
+ def create_rnn(self):
144
+ return nn.RNN(
145
+ input_size=4096,
146
+ hidden_size=2048,
147
+ num_layers=5,
148
+ nonlinearity="tanh",
149
+ batch_first=True
150
+ )
151
+
152
+ def create_cnn(self):
153
+ return nn.Sequential(
154
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
155
+ nn.ReLU(),
156
+ nn.MaxPool2d(2),
157
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
158
+ nn.ReLU(),
159
+ nn.MaxPool2d(2),
160
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
161
+ nn.ReLU(),
162
+ nn.Flatten(),
163
+ nn.Linear(256 * 8 * 8, 1024),
164
+ nn.ReLU(),
165
+ nn.Linear(1024, 512)
166
+ )
167
+
168
+ def create_fnn(self):
169
+ return nn.Sequential(
170
+ nn.Linear(4096, 2048),
171
+ nn.ReLU(),
172
+ nn.Linear(2048, 1024),
173
+ nn.ReLU(),
174
+ nn.Linear(1024, 512)
175
+ )
176
+
177
+ def initialize_ga_population(self):
178
+ return [np.random.randn(4096) for _ in range(500)]
179
+
180
+ def run_snn(self, x):
181
+ input_tensor = torch.tensor(x, dtype=torch.float32)
182
+ output = self.snn(input_tensor)
183
+ print("SNN Output:", output)
184
+ return output
185
+
186
+ def run_rnn(self, x):
187
+ h0 = torch.zeros(5, x.size(0), 2048)
188
+ input_tensor = torch.tensor(x, dtype=torch.float32)
189
+ output, hn = self.rnn(input_tensor, h0)
190
+ print("RNN Output:", output)
191
+ return output
192
+
193
+ def run_cnn(self, x):
194
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
195
+ output = self.cnn(input_tensor)
196
+ print("CNN Output:", output)
197
+ return output
198
+
199
+ def run_fnn(self, x):
200
+ input_tensor = torch.tensor(x, dtype=torch.float32)
201
+ output = self.fnn(input_tensor)
202
+ print("FNN Output:", output)
203
+ return output
204
+
205
+ def run_ga(self, fitness_func):
206
+ for generation in range(200):
207
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
208
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
209
+ self.ga_population = sorted_population[:250] + [
210
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
211
+ ]
212
+ best_fitness = max(fitness_scores)
213
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
214
+ return max(self.ga_population, key=fitness_func)
215
+
216
+ def consciousness_loop(self, input_data, mode="snn"):
217
+ feedback = self.memory.get(mode, None)
218
+ if feedback is not None:
219
+ input_data = np.concatenate((input_data, feedback), axis=-1)
220
+ if mode == "snn":
221
+ output = self.run_snn(input_data)
222
+ elif mode == "rnn":
223
+ output = self.run_rnn(input_data)
224
+ elif mode == "cnn":
225
+ output = self.run_cnn(input_data)
226
+ elif mode == "fnn":
227
+ output = self.run_fnn(input_data)
228
+ else:
229
+ raise ValueError("Invalid mode")
230
+ self.memory[mode] = output.detach().numpy()
231
+ return output
232
+
233
+ supermassive_nn = ConsciousSupermassiveNN()
234
+
235
+ class ConsciousSupermassiveNN2:
236
+ def __init__(self):
237
+ self.snn = self.create_snn()
238
+ self.rnn = self.create_rnn()
239
+ self.cnn = self.create_cnn()
240
+ self.fnn = self.create_fnn()
241
+ self.ga_population = self.initialize_ga_population()
242
+ self.memory = {}
243
+
244
+ def create_snn(self):
245
+ return nn.Sequential(
246
+ nn.Linear(4096, 2048),
247
+ nn.ReLU(),
248
+ nn.Linear(2048, 1024),
249
+ nn.Sigmoid()
250
+ )
251
+
252
+ def create_rnn(self):
253
+ return nn.RNN(
254
+ input_size=4096,
255
+ hidden_size=2048,
256
+ num_layers=5,
257
+ nonlinearity="tanh",
258
+ batch_first=True
259
+ )
260
+
261
+ def create_cnn(self):
262
+ return nn.Sequential(
263
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
264
+ nn.ReLU(),
265
+ nn.MaxPool2d(2),
266
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
267
+ nn.ReLU(),
268
+ nn.MaxPool2d(2),
269
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
270
+ nn.ReLU(),
271
+ nn.Flatten(),
272
+ nn.Linear(256 * 8 * 8, 1024),
273
+ nn.ReLU(),
274
+ nn.Linear(1024, 512)
275
+ )
276
+
277
+ def create_fnn(self):
278
+ return nn.Sequential(
279
+ nn.Linear(4096, 2048),
280
+ nn.ReLU(),
281
+ nn.Linear(2048, 1024),
282
+ nn.ReLU(),
283
+ nn.Linear(1024, 512)
284
+ )
285
+
286
+ def initialize_ga_population(self):
287
+ return [np.random.randn(4096) for _ in range(500)]
288
+
289
+ def run_snn(self, x):
290
+ input_tensor = torch.tensor(x, dtype=torch.float32)
291
+ output = self.snn(input_tensor)
292
+ print("SNN Output:", output)
293
+ return output
294
+
295
+ def run_rnn(self, x):
296
+ h0 = torch.zeros(5, x.size(0), 2048)
297
+ input_tensor = torch.tensor(x, dtype=torch.float32)
298
+ output, hn = self.rnn(input_tensor, h0)
299
+ print("RNN Output:", output)
300
+ return output
301
+
302
+ def run_cnn(self, x):
303
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
304
+ output = self.cnn(input_tensor)
305
+ print("CNN Output:", output)
306
+ return output
307
+
308
+ def run_fnn(self, x):
309
+ input_tensor = torch.tensor(x, dtype=torch.float32)
310
+ output = self.fnn(input_tensor)
311
+ print("FNN Output:", output)
312
+ return output
313
+
314
+ def run_ga(self, fitness_func):
315
+ for generation in range(200):
316
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
317
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
318
+ self.ga_population = sorted_population[:250] + [
319
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
320
+ ]
321
+ best_fitness = max(fitness_scores)
322
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
323
+ return max(self.ga_population, key=fitness_func)
324
+
325
+ def consciousness_loop(self, input_data, mode="snn"):
326
+ feedback = self.memory.get(mode, None)
327
+ if feedback is not None:
328
+ input_data = np.concatenate((input_data, feedback), axis=-1)
329
+ if mode == "snn":
330
+ output = self.run_snn(input_data)
331
+ elif mode == "rnn":
332
+ output = self.run_rnn(input_data)
333
+ elif mode == "cnn":
334
+ output = self.run_cnn(input_data)
335
+ elif mode == "fnn":
336
+ output = self.run_fnn(input_data)
337
+ else:
338
+ raise ValueError("Invalid mode")
339
+ self.memory[mode] = output.detach().numpy()
340
+ return output
341
+
342
+ supermassive_nn = ConsciousSupermassiveNN2()
343
+
344
+
345
+ class ConsciousSupermassiveNN3:
346
+ def __init__(self):
347
+ self.snn = self.create_snn()
348
+ self.rnn = self.create_rnn()
349
+ self.cnn = self.create_cnn()
350
+ self.fnn = self.create_fnn()
351
+ self.ga_population = self.initialize_ga_population()
352
+ self.memory = {}
353
+
354
+ def create_snn(self):
355
+ return nn.Sequential(
356
+ nn.Linear(4096, 2048),
357
+ nn.ReLU(),
358
+ nn.Linear(2048, 1024),
359
+ nn.Sigmoid()
360
+ )
361
+
362
+ def create_rnn(self):
363
+ return nn.RNN(
364
+ input_size=4096,
365
+ hidden_size=2048,
366
+ num_layers=5,
367
+ nonlinearity="tanh",
368
+ batch_first=True
369
+ )
370
+
371
+ def create_cnn(self):
372
+ return nn.Sequential(
373
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
374
+ nn.ReLU(),
375
+ nn.MaxPool2d(2),
376
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
377
+ nn.ReLU(),
378
+ nn.MaxPool2d(2),
379
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
380
+ nn.ReLU(),
381
+ nn.Flatten(),
382
+ nn.Linear(256 * 8 * 8, 1024),
383
+ nn.ReLU(),
384
+ nn.Linear(1024, 512)
385
+ )
386
+
387
+ def create_fnn(self):
388
+ return nn.Sequential(
389
+ nn.Linear(4096, 2048),
390
+ nn.ReLU(),
391
+ nn.Linear(2048, 1024),
392
+ nn.ReLU(),
393
+ nn.Linear(1024, 512)
394
+ )
395
+
396
+ def initialize_ga_population(self):
397
+ return [np.random.randn(4096) for _ in range(500)]
398
+
399
+ def run_snn(self, x):
400
+ input_tensor = torch.tensor(x, dtype=torch.float32)
401
+ output = self.snn(input_tensor)
402
+ print("SNN Output:", output)
403
+ return output
404
+
405
+ def run_rnn(self, x):
406
+ h0 = torch.zeros(5, x.size(0), 2048)
407
+ input_tensor = torch.tensor(x, dtype=torch.float32)
408
+ output, hn = self.rnn(input_tensor, h0)
409
+ print("RNN Output:", output)
410
+ return output
411
+
412
+ def run_cnn(self, x):
413
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
414
+ output = self.cnn(input_tensor)
415
+ print("CNN Output:", output)
416
+ return output
417
+
418
+ def run_fnn(self, x):
419
+ input_tensor = torch.tensor(x, dtype=torch.float32)
420
+ output = self.fnn(input_tensor)
421
+ print("FNN Output:", output)
422
+ return output
423
+
424
+ def run_ga(self, fitness_func):
425
+ for generation in range(200):
426
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
427
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
428
+ self.ga_population = sorted_population[:250] + [
429
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
430
+ ]
431
+ best_fitness = max(fitness_scores)
432
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
433
+ return max(self.ga_population, key=fitness_func)
434
+
435
+ def consciousness_loop(self, input_data, mode="snn"):
436
+ feedback = self.memory.get(mode, None)
437
+ if feedback is not None:
438
+ input_data = np.concatenate((input_data, feedback), axis=-1)
439
+ if mode == "snn":
440
+ output = self.run_snn(input_data)
441
+ elif mode == "rnn":
442
+ output = self.run_rnn(input_data)
443
+ elif mode == "cnn":
444
+ output = self.run_cnn(input_data)
445
+ elif mode == "fnn":
446
+ output = self.run_fnn(input_data)
447
+ else:
448
+ raise ValueError("Invalid mode")
449
+ self.memory[mode] = output.detach().numpy()
450
+ return output
451
+
452
+ supermassive_nn = ConsciousSupermassiveNN()
453
+
454
+
455
+ class ConsciousSupermassiveNN:
456
+ def __init__(self):
457
+ self.snn = self.create_snn()
458
+ self.rnn = self.create_rnn()
459
+ self.cnn = self.create_cnn()
460
+ self.fnn = self.create_fnn()
461
+ self.ga_population = self.initialize_ga_population()
462
+ self.memory = {}
463
+
464
+ def create_snn(self):
465
+ return nn.Sequential(
466
+ nn.Linear(4096, 2048),
467
+ nn.ReLU(),
468
+ nn.Linear(2048, 1024),
469
+ nn.Sigmoid()
470
+ )
471
+
472
+ def create_rnn(self):
473
+ return nn.RNN(
474
+ input_size=4096,
475
+ hidden_size=2048,
476
+ num_layers=5,
477
+ nonlinearity="tanh",
478
+ batch_first=True
479
+ )
480
+
481
+ def create_cnn(self):
482
+ return nn.Sequential(
483
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
484
+ nn.ReLU(),
485
+ nn.MaxPool2d(2),
486
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
487
+ nn.ReLU(),
488
+ nn.MaxPool2d(2),
489
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
490
+ nn.ReLU(),
491
+ nn.Flatten(),
492
+ nn.Linear(256 * 8 * 8, 1024),
493
+ nn.ReLU(),
494
+ nn.Linear(1024, 512)
495
+ )
496
+
497
+ def create_fnn(self):
498
+ return nn.Sequential(
499
+ nn.Linear(4096, 2048),
500
+ nn.ReLU(),
501
+ nn.Linear(2048, 1024),
502
+ nn.ReLU(),
503
+ nn.Linear(1024, 512)
504
+ )
505
+
506
+ def initialize_ga_population(self):
507
+ return [np.random.randn(4096) for _ in range(500)]
508
+
509
+ def run_snn(self, x):
510
+ input_tensor = torch.tensor(x, dtype=torch.float32)
511
+ output = self.snn(input_tensor)
512
+ print("SNN Output:", output)
513
+ return output
514
+
515
+ def run_rnn(self, x):
516
+ h0 = torch.zeros(5, x.size(0), 2048)
517
+ input_tensor = torch.tensor(x, dtype=torch.float32)
518
+ output, hn = self.rnn(input_tensor, h0)
519
+ print("RNN Output:", output)
520
+ return output
521
+
522
+ def run_cnn(self, x):
523
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
524
+ output = self.cnn(input_tensor)
525
+ print("CNN Output:", output)
526
+ return output
527
+
528
+ def run_fnn(self, x):
529
+ input_tensor = torch.tensor(x, dtype=torch.float32)
530
+ output = self.fnn(input_tensor)
531
+ print("FNN Output:", output)
532
+ return output
533
+
534
+ def run_ga(self, fitness_func):
535
+ for generation in range(200):
536
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
537
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
538
+ self.ga_population = sorted_population[:250] + [
539
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
540
+ ]
541
+ best_fitness = max(fitness_scores)
542
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
543
+ return max(self.ga_population, key=fitness_func)
544
+
545
+ def consciousness_loop(self, input_data, mode="snn"):
546
+ feedback = self.memory.get(mode, None)
547
+ if feedback is not None:
548
+ input_data = np.concatenate((input_data, feedback), axis=-1)
549
+ if mode == "snn":
550
+ output = self.run_snn(input_data)
551
+ elif mode == "rnn":
552
+ output = self.run_rnn(input_data)
553
+ elif mode == "cnn":
554
+ output = self.run_cnn(input_data)
555
+ elif mode == "fnn":
556
+ output = self.run_fnn(input_data)
557
+ else:
558
+ raise ValueError("Invalid mode")
559
+ self.memory[mode] = output.detach().numpy()
560
+ return output
561
+
562
+ supermassive_nn = ConsciousSupermassiveNN3()
563
+
564
+
565
+ class ConsciousSupermassiveNN4:
566
+ def __init__(self):
567
+ self.snn = self.create_snn()
568
+ self.rnn = self.create_rnn()
569
+ self.cnn = self.create_cnn()
570
+ self.fnn = self.create_fnn()
571
+ self.ga_population = self.initialize_ga_population()
572
+ self.memory = {}
573
+
574
+ def create_snn(self):
575
+ return nn.Sequential(
576
+ nn.Linear(4096, 2048),
577
+ nn.ReLU(),
578
+ nn.Linear(2048, 1024),
579
+ nn.Sigmoid()
580
+ )
581
+
582
+ def create_rnn(self):
583
+ return nn.RNN(
584
+ input_size=4096,
585
+ hidden_size=2048,
586
+ num_layers=5,
587
+ nonlinearity="tanh",
588
+ batch_first=True
589
+ )
590
+
591
+ def create_cnn(self):
592
+ return nn.Sequential(
593
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
594
+ nn.ReLU(),
595
+ nn.MaxPool2d(2),
596
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
597
+ nn.ReLU(),
598
+ nn.MaxPool2d(2),
599
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
600
+ nn.ReLU(),
601
+ nn.Flatten(),
602
+ nn.Linear(256 * 8 * 8, 1024),
603
+ nn.ReLU(),
604
+ nn.Linear(1024, 512)
605
+ )
606
+
607
+ def create_fnn(self):
608
+ return nn.Sequential(
609
+ nn.Linear(4096, 2048),
610
+ nn.ReLU(),
611
+ nn.Linear(2048, 1024),
612
+ nn.ReLU(),
613
+ nn.Linear(1024, 512)
614
+ )
615
+
616
+ def initialize_ga_population(self):
617
+ return [np.random.randn(4096) for _ in range(500)]
618
+
619
+ def run_snn(self, x):
620
+ input_tensor = torch.tensor(x, dtype=torch.float32)
621
+ output = self.snn(input_tensor)
622
+ print("SNN Output:", output)
623
+ return output
624
+
625
+ def run_rnn(self, x):
626
+ h0 = torch.zeros(5, x.size(0), 2048)
627
+ input_tensor = torch.tensor(x, dtype=torch.float32)
628
+ output, hn = self.rnn(input_tensor, h0)
629
+ print("RNN Output:", output)
630
+ return output
631
+
632
+ def run_cnn(self, x):
633
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
634
+ output = self.cnn(input_tensor)
635
+ print("CNN Output:", output)
636
+ return output
637
+
638
+ def run_fnn(self, x):
639
+ input_tensor = torch.tensor(x, dtype=torch.float32)
640
+ output = self.fnn(input_tensor)
641
+ print("FNN Output:", output)
642
+ return output
643
+
644
+ def run_ga(self, fitness_func):
645
+ for generation in range(200):
646
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
647
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
648
+ self.ga_population = sorted_population[:250] + [
649
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
650
+ ]
651
+ best_fitness = max(fitness_scores)
652
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
653
+ return max(self.ga_population, key=fitness_func)
654
+
655
+ def consciousness_loop(self, input_data, mode="snn"):
656
+ feedback = self.memory.get(mode, None)
657
+ if feedback is not None:
658
+ input_data = np.concatenate((input_data, feedback), axis=-1)
659
+ if mode == "snn":
660
+ output = self.run_snn(input_data)
661
+ elif mode == "rnn":
662
+ output = self.run_rnn(input_data)
663
+ elif mode == "cnn":
664
+ output = self.run_cnn(input_data)
665
+ elif mode == "fnn":
666
+ output = self.run_fnn(input_data)
667
+ else:
668
+ raise ValueError("Invalid mode")
669
+ self.memory[mode] = output.detach().numpy()
670
+ return output
671
+
672
+ supermassive_nn = ConsciousSupermassiveNN()
673
+
674
+
675
+ class ConsciousSupermassiveNN:
676
+ def __init__(self):
677
+ self.snn = self.create_snn()
678
+ self.rnn = self.create_rnn()
679
+ self.cnn = self.create_cnn()
680
+ self.fnn = self.create_fnn()
681
+ self.ga_population = self.initialize_ga_population()
682
+ self.memory = {}
683
+
684
+ def create_snn(self):
685
+ return nn.Sequential(
686
+ nn.Linear(4096, 2048),
687
+ nn.ReLU(),
688
+ nn.Linear(2048, 1024),
689
+ nn.Sigmoid()
690
+ )
691
+
692
+ def create_rnn(self):
693
+ return nn.RNN(
694
+ input_size=4096,
695
+ hidden_size=2048,
696
+ num_layers=5,
697
+ nonlinearity="tanh",
698
+ batch_first=True
699
+ )
700
+
701
+ def create_cnn(self):
702
+ return nn.Sequential(
703
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
704
+ nn.ReLU(),
705
+ nn.MaxPool2d(2),
706
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
707
+ nn.ReLU(),
708
+ nn.MaxPool2d(2),
709
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
710
+ nn.ReLU(),
711
+ nn.Flatten(),
712
+ nn.Linear(256 * 8 * 8, 1024),
713
+ nn.ReLU(),
714
+ nn.Linear(1024, 512)
715
+ )
716
+
717
+ def create_fnn(self):
718
+ return nn.Sequential(
719
+ nn.Linear(4096, 2048),
720
+ nn.ReLU(),
721
+ nn.Linear(2048, 1024),
722
+ nn.ReLU(),
723
+ nn.Linear(1024, 512)
724
+ )
725
+
726
+ def initialize_ga_population(self):
727
+ return [np.random.randn(4096) for _ in range(500)]
728
+
729
+ def run_snn(self, x):
730
+ input_tensor = torch.tensor(x, dtype=torch.float32)
731
+ output = self.snn(input_tensor)
732
+ print("SNN Output:", output)
733
+ return output
734
+
735
+ def run_rnn(self, x):
736
+ h0 = torch.zeros(5, x.size(0), 2048)
737
+ input_tensor = torch.tensor(x, dtype=torch.float32)
738
+ output, hn = self.rnn(input_tensor, h0)
739
+ print("RNN Output:", output)
740
+ return output
741
+
742
+ def run_cnn(self, x):
743
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
744
+ output = self.cnn(input_tensor)
745
+ print("CNN Output:", output)
746
+ return output
747
+
748
+ def run_fnn(self, x):
749
+ input_tensor = torch.tensor(x, dtype=torch.float32)
750
+ output = self.fnn(input_tensor)
751
+ print("FNN Output:", output)
752
+ return output
753
+
754
+ def run_ga(self, fitness_func):
755
+ for generation in range(200):
756
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
757
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
758
+ self.ga_population = sorted_population[:250] + [
759
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
760
+ ]
761
+ best_fitness = max(fitness_scores)
762
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
763
+ return max(self.ga_population, key=fitness_func)
764
+
765
+ def consciousness_loop(self, input_data, mode="snn"):
766
+ feedback = self.memory.get(mode, None)
767
+ if feedback is not None:
768
+ input_data = np.concatenate((input_data, feedback), axis=-1)
769
+ if mode == "snn":
770
+ output = self.run_snn(input_data)
771
+ elif mode == "rnn":
772
+ output = self.run_rnn(input_data)
773
+ elif mode == "cnn":
774
+ output = self.run_cnn(input_data)
775
+ elif mode == "fnn":
776
+ output = self.run_fnn(input_data)
777
+ else:
778
+ raise ValueError("Invalid mode")
779
+ self.memory[mode] = output.detach().numpy()
780
+ return output
781
+
782
+ supermassive_nn = ConsciousSupermassiveNN5()
783
+
784
+
785
+
786
+ class ConsciousSupermassiveNN6:
787
+ def __init__(self):
788
+ self.snn = self.create_snn()
789
+ self.rnn = self.create_rnn()
790
+ self.cnn = self.create_cnn()
791
+ self.fnn = self.create_fnn()
792
+ self.ga_population = self.initialize_ga_population()
793
+ self.memory = {}
794
+
795
+ def create_snn(self):
796
+ return nn.Sequential(
797
+ nn.Linear(4096, 2048),
798
+ nn.ReLU(),
799
+ nn.Linear(2048, 1024),
800
+ nn.Sigmoid()
801
+ )
802
+
803
+ def create_rnn(self):
804
+ return nn.RNN(
805
+ input_size=4096,
806
+ hidden_size=2048,
807
+ num_layers=5,
808
+ nonlinearity="tanh",
809
+ batch_first=True
810
+ )
811
+
812
+ def create_cnn(self):
813
+ return nn.Sequential(
814
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
815
+ nn.ReLU(),
816
+ nn.MaxPool2d(2),
817
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
818
+ nn.ReLU(),
819
+ nn.MaxPool2d(2),
820
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
821
+ nn.ReLU(),
822
+ nn.Flatten(),
823
+ nn.Linear(256 * 8 * 8, 1024),
824
+ nn.ReLU(),
825
+ nn.Linear(1024, 512)
826
+ )
827
+
828
+ def create_fnn(self):
829
+ return nn.Sequential(
830
+ nn.Linear(4096, 2048),
831
+ nn.ReLU(),
832
+ nn.Linear(2048, 1024),
833
+ nn.ReLU(),
834
+ nn.Linear(1024, 512)
835
+ )
836
+
837
+ def initialize_ga_population(self):
838
+ return [np.random.randn(4096) for _ in range(500)]
839
+
840
+ def run_snn(self, x):
841
+ input_tensor = torch.tensor(x, dtype=torch.float32)
842
+ output = self.snn(input_tensor)
843
+ print("SNN Output:", output)
844
+ return output
845
+
846
+ def run_rnn(self, x):
847
+ h0 = torch.zeros(5, x.size(0), 2048)
848
+ input_tensor = torch.tensor(x, dtype=torch.float32)
849
+ output, hn = self.rnn(input_tensor, h0)
850
+ print("RNN Output:", output)
851
+ return output
852
+
853
+ def run_cnn(self, x):
854
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
855
+ output = self.cnn(input_tensor)
856
+ print("CNN Output:", output)
857
+ return output
858
+
859
+ def run_fnn(self, x):
860
+ input_tensor = torch.tensor(x, dtype=torch.float32)
861
+ output = self.fnn(input_tensor)
862
+ print("FNN Output:", output)
863
+ return output
864
+
865
+ def run_ga(self, fitness_func):
866
+ for generation in range(200):
867
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
868
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
869
+ self.ga_population = sorted_population[:250] + [
870
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
871
+ ]
872
+ best_fitness = max(fitness_scores)
873
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
874
+ return max(self.ga_population, key=fitness_func)
875
+
876
+ def consciousness_loop(self, input_data, mode="snn"):
877
+ feedback = self.memory.get(mode, None)
878
+ if feedback is not None:
879
+ input_data = np.concatenate((input_data, feedback), axis=-1)
880
+ if mode == "snn":
881
+ output = self.run_snn(input_data)
882
+ elif mode == "rnn":
883
+ output = self.run_rnn(input_data)
884
+ elif mode == "cnn":
885
+ output = self.run_cnn(input_data)
886
+ elif mode == "fnn":
887
+ output = self.run_fnn(input_data)
888
+ else:
889
+ raise ValueError("Invalid mode")
890
+ self.memory[mode] = output.detach().numpy()
891
+ return output
892
+
893
+ supermassive_nn = ConsciousSupermassiveNN6()
894
+
895
+
896
+
897
+ class ConsciousSupermassiveNN7:
898
+ def __init__(self):
899
+ self.snn = self.create_snn()
900
+ self.rnn = self.create_rnn()
901
+ self.cnn = self.create_cnn()
902
+ self.fnn = self.create_fnn()
903
+ self.ga_population = self.initialize_ga_population()
904
+ self.memory = {}
905
+
906
+ def create_snn(self):
907
+ return nn.Sequential(
908
+ nn.Linear(4096, 2048),
909
+ nn.ReLU(),
910
+ nn.Linear(2048, 1024),
911
+ nn.Sigmoid()
912
+ )
913
+
914
+ def create_rnn(self):
915
+ return nn.RNN(
916
+ input_size=4096,
917
+ hidden_size=2048,
918
+ num_layers=5,
919
+ nonlinearity="tanh",
920
+ batch_first=True
921
+ )
922
+
923
+ def create_cnn(self):
924
+ return nn.Sequential(
925
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
926
+ nn.ReLU(),
927
+ nn.MaxPool2d(2),
928
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
929
+ nn.ReLU(),
930
+ nn.MaxPool2d(2),
931
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
932
+ nn.ReLU(),
933
+ nn.Flatten(),
934
+ nn.Linear(256 * 8 * 8, 1024),
935
+ nn.ReLU(),
936
+ nn.Linear(1024, 512)
937
+ )
938
+
939
+ def create_fnn(self):
940
+ return nn.Sequential(
941
+ nn.Linear(4096, 2048),
942
+ nn.ReLU(),
943
+ nn.Linear(2048, 1024),
944
+ nn.ReLU(),
945
+ nn.Linear(1024, 512)
946
+ )
947
+
948
+ def initialize_ga_population(self):
949
+ return [np.random.randn(4096) for _ in range(500)]
950
+
951
+ def run_snn(self, x):
952
+ input_tensor = torch.tensor(x, dtype=torch.float32)
953
+ output = self.snn(input_tensor)
954
+ print("SNN Output:", output)
955
+ return output
956
+
957
+ def run_rnn(self, x):
958
+ h0 = torch.zeros(5, x.size(0), 2048)
959
+ input_tensor = torch.tensor(x, dtype=torch.float32)
960
+ output, hn = self.rnn(input_tensor, h0)
961
+ print("RNN Output:", output)
962
+ return output
963
+
964
+ def run_cnn(self, x):
965
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
966
+ output = self.cnn(input_tensor)
967
+ print("CNN Output:", output)
968
+ return output
969
+
970
+ def run_fnn(self, x):
971
+ input_tensor = torch.tensor(x, dtype=torch.float32)
972
+ output = self.fnn(input_tensor)
973
+ print("FNN Output:", output)
974
+ return output
975
+
976
+ def run_ga(self, fitness_func):
977
+ for generation in range(200):
978
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
979
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
980
+ self.ga_population = sorted_population[:250] + [
981
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
982
+ ]
983
+ best_fitness = max(fitness_scores)
984
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
985
+ return max(self.ga_population, key=fitness_func)
986
+
987
+ def consciousness_loop(self, input_data, mode="snn"):
988
+ feedback = self.memory.get(mode, None)
989
+ if feedback is not None:
990
+ input_data = np.concatenate((input_data, feedback), axis=-1)
991
+ if mode == "snn":
992
+ output = self.run_snn(input_data)
993
+ elif mode == "rnn":
994
+ output = self.run_rnn(input_data)
995
+ elif mode == "cnn":
996
+ output = self.run_cnn(input_data)
997
+ elif mode == "fnn":
998
+ output = self.run_fnn(input_data)
999
+ else:
1000
+ raise ValueError("Invalid mode")
1001
+ self.memory[mode] = output.detach().numpy()
1002
+ return output
1003
+
1004
+ supermassive_nn = ConsciousSupermassiveNN7()
1005
+
1006
+
1007
+ class ConsciousSupermassiveNN8:
1008
+ def __init__(self):
1009
+ self.snn = self.create_snn()
1010
+ self.rnn = self.create_rnn()
1011
+ self.cnn = self.create_cnn()
1012
+ self.fnn = self.create_fnn()
1013
+ self.ga_population = self.initialize_ga_population()
1014
+ self.memory = {}
1015
+
1016
+ def create_snn(self):
1017
+ return nn.Sequential(
1018
+ nn.Linear(4096, 2048),
1019
+ nn.ReLU(),
1020
+ nn.Linear(2048, 1024),
1021
+ nn.Sigmoid()
1022
+ )
1023
+
1024
+ def create_rnn(self):
1025
+ return nn.RNN(
1026
+ input_size=4096,
1027
+ hidden_size=2048,
1028
+ num_layers=5,
1029
+ nonlinearity="tanh",
1030
+ batch_first=True
1031
+ )
1032
+
1033
+ def create_cnn(self):
1034
+ return nn.Sequential(
1035
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1036
+ nn.ReLU(),
1037
+ nn.MaxPool2d(2),
1038
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1039
+ nn.ReLU(),
1040
+ nn.MaxPool2d(2),
1041
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1042
+ nn.ReLU(),
1043
+ nn.Flatten(),
1044
+ nn.Linear(256 * 8 * 8, 1024),
1045
+ nn.ReLU(),
1046
+ nn.Linear(1024, 512)
1047
+ )
1048
+
1049
+ def create_fnn(self):
1050
+ return nn.Sequential(
1051
+ nn.Linear(4096, 2048),
1052
+ nn.ReLU(),
1053
+ nn.Linear(2048, 1024),
1054
+ nn.ReLU(),
1055
+ nn.Linear(1024, 512)
1056
+ )
1057
+
1058
+ def initialize_ga_population(self):
1059
+ return [np.random.randn(4096) for _ in range(500)]
1060
+
1061
+ def run_snn(self, x):
1062
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1063
+ output = self.snn(input_tensor)
1064
+ print("SNN Output:", output)
1065
+ return output
1066
+
1067
+ def run_rnn(self, x):
1068
+ h0 = torch.zeros(5, x.size(0), 2048)
1069
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1070
+ output, hn = self.rnn(input_tensor, h0)
1071
+ print("RNN Output:", output)
1072
+ return output
1073
+
1074
+ def run_cnn(self, x):
1075
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1076
+ output = self.cnn(input_tensor)
1077
+ print("CNN Output:", output)
1078
+ return output
1079
+
1080
+ def run_fnn(self, x):
1081
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1082
+ output = self.fnn(input_tensor)
1083
+ print("FNN Output:", output)
1084
+ return output
1085
+
1086
+ def run_ga(self, fitness_func):
1087
+ for generation in range(200):
1088
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1089
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1090
+ self.ga_population = sorted_population[:250] + [
1091
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1092
+ ]
1093
+ best_fitness = max(fitness_scores)
1094
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1095
+ return max(self.ga_population, key=fitness_func)
1096
+
1097
+ def consciousness_loop(self, input_data, mode="snn"):
1098
+ feedback = self.memory.get(mode, None)
1099
+ if feedback is not None:
1100
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1101
+ if mode == "snn":
1102
+ output = self.run_snn(input_data)
1103
+ elif mode == "rnn":
1104
+ output = self.run_rnn(input_data)
1105
+ elif mode == "cnn":
1106
+ output = self.run_cnn(input_data)
1107
+ elif mode == "fnn":
1108
+ output = self.run_fnn(input_data)
1109
+ else:
1110
+ raise ValueError("Invalid mode")
1111
+ self.memory[mode] = output.detach().numpy()
1112
+ return output
1113
+
1114
+ supermassive_nn = ConsciousSupermassiveNN8()
1115
+
1116
+
1117
+ class ConsciousSupermassiveNN9:
1118
+ def __init__(self):
1119
+ self.snn = self.create_snn()
1120
+ self.rnn = self.create_rnn()
1121
+ self.cnn = self.create_cnn()
1122
+ self.fnn = self.create_fnn()
1123
+ self.ga_population = self.initialize_ga_population()
1124
+ self.memory = {}
1125
+
1126
+ def create_snn(self):
1127
+ return nn.Sequential(
1128
+ nn.Linear(4096, 2048),
1129
+ nn.ReLU(),
1130
+ nn.Linear(2048, 1024),
1131
+ nn.Sigmoid()
1132
+ )
1133
+
1134
+ def create_rnn(self):
1135
+ return nn.RNN(
1136
+ input_size=4096,
1137
+ hidden_size=2048,
1138
+ num_layers=5,
1139
+ nonlinearity="tanh",
1140
+ batch_first=True
1141
+ )
1142
+
1143
+ def create_cnn(self):
1144
+ return nn.Sequential(
1145
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1146
+ nn.ReLU(),
1147
+ nn.MaxPool2d(2),
1148
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1149
+ nn.ReLU(),
1150
+ nn.MaxPool2d(2),
1151
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1152
+ nn.ReLU(),
1153
+ nn.Flatten(),
1154
+ nn.Linear(256 * 8 * 8, 1024),
1155
+ nn.ReLU(),
1156
+ nn.Linear(1024, 512)
1157
+ )
1158
+
1159
+ def create_fnn(self):
1160
+ return nn.Sequential(
1161
+ nn.Linear(4096, 2048),
1162
+ nn.ReLU(),
1163
+ nn.Linear(2048, 1024),
1164
+ nn.ReLU(),
1165
+ nn.Linear(1024, 512)
1166
+ )
1167
+
1168
+ def initialize_ga_population(self):
1169
+ return [np.random.randn(4096) for _ in range(500)]
1170
+
1171
+ def run_snn(self, x):
1172
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1173
+ output = self.snn(input_tensor)
1174
+ print("SNN Output:", output)
1175
+ return output
1176
+
1177
+ def run_rnn(self, x):
1178
+ h0 = torch.zeros(5, x.size(0), 2048)
1179
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1180
+ output, hn = self.rnn(input_tensor, h0)
1181
+ print("RNN Output:", output)
1182
+ return output
1183
+
1184
+ def run_cnn(self, x):
1185
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1186
+ output = self.cnn(input_tensor)
1187
+ print("CNN Output:", output)
1188
+ return output
1189
+
1190
+ def run_fnn(self, x):
1191
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1192
+ output = self.fnn(input_tensor)
1193
+ print("FNN Output:", output)
1194
+ return output
1195
+
1196
+ def run_ga(self, fitness_func):
1197
+ for generation in range(200):
1198
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1199
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1200
+ self.ga_population = sorted_population[:250] + [
1201
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1202
+ ]
1203
+ best_fitness = max(fitness_scores)
1204
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1205
+ return max(self.ga_population, key=fitness_func)
1206
+
1207
+ def consciousness_loop(self, input_data, mode="snn"):
1208
+ feedback = self.memory.get(mode, None)
1209
+ if feedback is not None:
1210
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1211
+ if mode == "snn":
1212
+ output = self.run_snn(input_data)
1213
+ elif mode == "rnn":
1214
+ output = self.run_rnn(input_data)
1215
+ elif mode == "cnn":
1216
+ output = self.run_cnn(input_data)
1217
+ elif mode == "fnn":
1218
+ output = self.run_fnn(input_data)
1219
+ else:
1220
+ raise ValueError("Invalid mode")
1221
+ self.memory[mode] = output.detach().numpy()
1222
+ return output
1223
+
1224
+ supermassive_nn = ConsciousSupermassiveNN9()
1225
+
1226
+
1227
+ class ConsciousSupermassiveNN10:
1228
+ def __init__(self):
1229
+ self.snn = self.create_snn()
1230
+ self.rnn = self.create_rnn()
1231
+ self.cnn = self.create_cnn()
1232
+ self.fnn = self.create_fnn()
1233
+ self.ga_population = self.initialize_ga_population()
1234
+ self.memory = {}
1235
+
1236
+ def create_snn(self):
1237
+ return nn.Sequential(
1238
+ nn.Linear(4096, 2048),
1239
+ nn.ReLU(),
1240
+ nn.Linear(2048, 1024),
1241
+ nn.Sigmoid()
1242
+ )
1243
+
1244
+ def create_rnn(self):
1245
+ return nn.RNN(
1246
+ input_size=4096,
1247
+ hidden_size=2048,
1248
+ num_layers=5,
1249
+ nonlinearity="tanh",
1250
+ batch_first=True
1251
+ )
1252
+
1253
+ def create_cnn(self):
1254
+ return nn.Sequential(
1255
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
1256
+ nn.ReLU(),
1257
+ nn.MaxPool2d(2),
1258
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
1259
+ nn.ReLU(),
1260
+ nn.MaxPool2d(2),
1261
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
1262
+ nn.ReLU(),
1263
+ nn.Flatten(),
1264
+ nn.Linear(256 * 8 * 8, 1024),
1265
+ nn.ReLU(),
1266
+ nn.Linear(1024, 512)
1267
+ )
1268
+
1269
+ def create_fnn(self):
1270
+ return nn.Sequential(
1271
+ nn.Linear(4096, 2048),
1272
+ nn.ReLU(),
1273
+ nn.Linear(2048, 1024),
1274
+ nn.ReLU(),
1275
+ nn.Linear(1024, 512)
1276
+ )
1277
+
1278
+ def initialize_ga_population(self):
1279
+ return [np.random.randn(4096) for _ in range(500)]
1280
+
1281
+ def run_snn(self, x):
1282
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1283
+ output = self.snn(input_tensor)
1284
+ print("SNN Output:", output)
1285
+ return output
1286
+
1287
+ def run_rnn(self, x):
1288
+ h0 = torch.zeros(5, x.size(0), 2048)
1289
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1290
+ output, hn = self.rnn(input_tensor, h0)
1291
+ print("RNN Output:", output)
1292
+ return output
1293
+
1294
+ def run_cnn(self, x):
1295
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
1296
+ output = self.cnn(input_tensor)
1297
+ print("CNN Output:", output)
1298
+ return output
1299
+
1300
+ def run_fnn(self, x):
1301
+ input_tensor = torch.tensor(x, dtype=torch.float32)
1302
+ output = self.fnn(input_tensor)
1303
+ print("FNN Output:", output)
1304
+ return output
1305
+
1306
+ def run_ga(self, fitness_func):
1307
+ for generation in range(200):
1308
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
1309
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
1310
+ self.ga_population = sorted_population[:250] + [
1311
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
1312
+ ]
1313
+ best_fitness = max(fitness_scores)
1314
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
1315
+ return max(self.ga_population, key=fitness_func)
1316
+
1317
+ def consciousness_loop(self, input_data, mode="snn"):
1318
+ feedback = self.memory.get(mode, None)
1319
+ if feedback is not None:
1320
+ input_data = np.concatenate((input_data, feedback), axis=-1)
1321
+ if mode == "snn":
1322
+ output = self.run_snn(input_data)
1323
+ elif mode == "rnn":
1324
+ output = self.run_rnn(input_data)
1325
+ elif mode == "cnn":
1326
+ output = self.run_cnn(input_data)
1327
+ elif mode == "fnn":
1328
+ output = self.run_fnn(input_data)
1329
+ else:
1330
+ raise ValueError("Invalid mode")
1331
+ self.memory[mode] = output.detach().numpy()
1332
+ return output
1333
+
1334
+ supermassive_nn = ConsciousSupermassiveNN10()
1335
+
1336
+
1337
+
1338
  def respond(message, history, max_tokens, temperature, top_p):
1339
  messages = [{"role": "system", "content": system_prompt}]
1340
  for val in history: