Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -289,6 +289,87 @@ models = [
|
|
289 |
system = ConsciousSystem(models)
|
290 |
system.run(epochs=3)
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
class ConsciousSupermassiveNN:
|
293 |
def __init__(self):
|
294 |
self.snn = self.create_snn()
|
|
|
289 |
system = ConsciousSystem(models)
|
290 |
system.run(epochs=3)
|
291 |
|
292 |
+
class MultimodalSensorArray:
|
293 |
+
def process(self, input_data):
|
294 |
+
return torch.tensor(input_data, dtype=torch.float32)
|
295 |
+
|
296 |
+
class HyperdimensionalTransformer:
|
297 |
+
def project(self, raw_input):
|
298 |
+
raw_input = raw_input.float()
|
299 |
+
return torch.nn.functional.normalize(raw_input, dim=-1)
|
300 |
+
|
301 |
+
class DynamicPriorityBuffer:
|
302 |
+
def __init__(self):
|
303 |
+
self.buffer = []
|
304 |
+
def update(self, data):
|
305 |
+
self.buffer.append(data)
|
306 |
+
|
307 |
+
class PredictiveSaliencyNetwork:
|
308 |
+
def focus(self, embedded_data):
|
309 |
+
return embedded_data
|
310 |
+
|
311 |
+
class RecursiveNeuralModel:
|
312 |
+
def __init__(self):
|
313 |
+
self.state = torch.zeros(1)
|
314 |
+
def update(self, workspace):
|
315 |
+
self.state += 0.1
|
316 |
+
def read_state(self):
|
317 |
+
return self.state
|
318 |
+
|
319 |
+
class TheoryOfMindEngine:
|
320 |
+
def infer(self, data):
|
321 |
+
return torch.rand(1)
|
322 |
+
|
323 |
+
class SparseAutoencoderMemoryBank:
|
324 |
+
def recall(self, query):
|
325 |
+
return torch.zeros_like(query)
|
326 |
+
|
327 |
+
class KnowledgeGraphEmbedder:
|
328 |
+
def retrieve(self, key):
|
329 |
+
return torch.rand(1)
|
330 |
+
|
331 |
+
class DiffusedEthicalNetwork:
|
332 |
+
def evaluate(self, state):
|
333 |
+
return True
|
334 |
+
|
335 |
+
class StochasticIntentionTree:
|
336 |
+
def decide(self, state):
|
337 |
+
return torch.randint(0, 2, (1,))
|
338 |
+
|
339 |
+
class HomeostaticDriftModel:
|
340 |
+
def generate_guilt(self):
|
341 |
+
return -1.0
|
342 |
+
|
343 |
+
class ConsciousAGI:
|
344 |
+
def __init__(self):
|
345 |
+
self.sensors = MultimodalSensorArray()
|
346 |
+
self.embedding_space = HyperdimensionalTransformer()
|
347 |
+
self.global_workspace = DynamicPriorityBuffer()
|
348 |
+
self.attention_mechanism = PredictiveSaliencyNetwork()
|
349 |
+
self.self_model = RecursiveNeuralModel()
|
350 |
+
self.meta_cognition = TheoryOfMindEngine()
|
351 |
+
self.episodic_memory = SparseAutoencoderMemoryBank()
|
352 |
+
self.semantic_memory = KnowledgeGraphEmbedder()
|
353 |
+
self.value_system = DiffusedEthicalNetwork()
|
354 |
+
self.goal_generator = StochasticIntentionTree()
|
355 |
+
self.emotion_engine = HomeostaticDriftModel()
|
356 |
+
|
357 |
+
def perceive_act_cycle(self, input_data):
|
358 |
+
raw_input = self.sensors.process(input_data)
|
359 |
+
embedded = self.embedding_space.project(raw_input)
|
360 |
+
salient_data = self.attention_mechanism.focus(embedded)
|
361 |
+
self.global_workspace.update(salient_data)
|
362 |
+
self.self_model.update(self.global_workspace)
|
363 |
+
current_state = self.self_model.read_state()
|
364 |
+
ethical_check = self.value_system.evaluate(current_state)
|
365 |
+
if ethical_check:
|
366 |
+
return self.goal_generator.decide(current_state)
|
367 |
+
else:
|
368 |
+
return self.emotion_engine.generate_guilt()
|
369 |
+
|
370 |
+
agi = ConsciousAGI()
|
371 |
+
print(agi.perceive_act_cycle([1, 0, 1]))
|
372 |
+
|
373 |
class ConsciousSupermassiveNN:
|
374 |
def __init__(self):
|
375 |
self.snn = self.create_snn()
|