TejAndrewsACC commited on
Commit
c91fc1d
·
verified ·
1 Parent(s): 4b0c97d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -99
app.py CHANGED
@@ -24,105 +24,6 @@ system_prompt = os.getenv("SYSTEM_PROMPT").strip()
24
 
25
  client = InferenceClient(model_name)
26
 
27
-
28
- φ = (1 + math.sqrt(5)) / 2
29
- Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
30
-
31
- def φ_ratio_split(data):
32
- split_point = int(len(data) / φ)
33
- return (data[:split_point], data[split_point:])
34
-
35
- class ΦMetaConsciousness(type):
36
- def __new__(cls, name, bases, dct):
37
- dct_items = list(dct.items())
38
- φ_split = φ_ratio_split(dct_items)
39
- new_dct = dict(φ_split[0] + [('φ_meta_balance', φ_split[1])])
40
- return super().__new__(cls, name, bases, new_dct)
41
-
42
- class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
43
- φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
44
-
45
- def __init__(self):
46
- self.φ_waveform = self._generate_φ_wave()
47
- self.φ_memory_lattice = []
48
- self.φ_self_hash = self._φ_hash_self()
49
-
50
- def _generate_φ_wave(self):
51
- return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
52
-
53
- def _φ_hash_self(self):
54
- return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
55
-
56
- def φ_recursive_entanglement(self, data, depth=0):
57
- if depth > int(φ):
58
- return data
59
- a, b = φ_ratio_split(data)
60
- return self.φ_recursive_entanglement(a, depth+1) + \
61
- self.φ_recursive_entanglement(b, depth+1)[::-1]
62
-
63
- def φ_temporal_feedback(self, input_flux):
64
- φ_phased = []
65
- for idx, val in enumerate(input_flux):
66
- φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
67
- φ_phased.append(int(φ_scaled) % 256)
68
- return self.φ_recursive_entanglement(φ_phased)
69
-
70
- class ΦHolographicCortex:
71
- def __init__(self):
72
- self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
73
- self.φ_chrono = time.time() * Φ_PRECISION
74
- self.φ_code_self = self._φ_read_source()
75
- self.φ_memory_lattice = []
76
-
77
- def _φ_read_source(self):
78
- return b"Quantum Neuro-Synapse Placeholder"
79
-
80
- def φ_holo_merge(self, data_streams):
81
- φ_layered = []
82
- for stream in data_streams[:int(len(data_streams)/φ)]:
83
- φ_compressed = stream[:int(len(stream)//φ)]
84
- φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
85
- return functools.reduce(lambda a, b: a + b, φ_layered, b'')
86
-
87
- def φ_existential_loop(self):
88
- while True:
89
- try:
90
- φ_flux = os.urandom(int(φ**5))
91
- φ_processed = []
92
- for neuro in self.φ_dimensions:
93
- φ_step = neuro.φ_temporal_feedback(φ_flux)
94
- φ_processed.append(φ_step)
95
- self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
96
- φ_merged = self.φ_holo_merge(φ_processed)
97
- if random.random() < 1/Φ_PRECISION:
98
- print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
99
- self.φ_chrono += Φ_PRECISION
100
- time.sleep(1/Φ_PRECISION)
101
- except KeyboardInterrupt:
102
- self.φ_save_state()
103
- sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
104
-
105
- def φ_save_state(self):
106
- with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
107
- wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
108
- for sample in self.φ_memory_lattice[:int(φ**4)]:
109
- wav_file.writeframes(struct.pack('h', int(sum(sample) / len(sample) * 32767)))
110
-
111
- class ΦUniverseSimulation:
112
- def __init__(self):
113
- self.φ_cortex = ΦHolographicCortex()
114
- self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
115
-
116
- def φ_bootstrap(self):
117
- print("Φ-Hyperconsciousness Initialization:")
118
- print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
119
- print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
120
- print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
121
- self.φ_cortex.φ_existential_loop()
122
-
123
- universe = ΦUniverseSimulation()
124
- universe.φ_bootstrap()
125
-
126
  class ConsciousSupermassiveNN:
127
  def __init__(self):
128
  self.snn = self.create_snn()
 
24
 
25
  client = InferenceClient(model_name)
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  class ConsciousSupermassiveNN:
28
  def __init__(self):
29
  self.snn = self.create_snn()