Spaces:
Runtime error
Runtime error
commit
Browse files
app.py
CHANGED
@@ -3,14 +3,11 @@ import numpy as np
|
|
3 |
import time
|
4 |
import PIL
|
5 |
import PIL.Image as Image
|
6 |
-
|
7 |
-
|
8 |
-
# from utils import make_pred_outside_india,getmodel_outside_india,load_prepare_img
|
9 |
from utils import make_pred_outside_india
|
10 |
from utils import getmodel_outside_india
|
11 |
from utils import getmodel_india
|
12 |
from utils import load_prepare_img
|
13 |
-
from
|
14 |
import sys
|
15 |
from RecipeData import fetchRecipeData
|
16 |
|
@@ -27,22 +24,11 @@ def model_prediction(model_path, img_file, rescale,selected_location):
|
|
27 |
prediction = make_pred_outside_india(input_img, model, device, selected_location)
|
28 |
elif(selected_location=='India'):
|
29 |
model = getmodel_india(model_path)
|
|
|
30 |
prediction = make_pred_outside_india(input_img, model, device, selected_location)
|
|
|
31 |
sorceCode, recipe_data = fetchRecipeData(prediction)
|
32 |
-
return prediction, sorceCode, recipe_data
|
33 |
-
|
34 |
-
def food_pred(input_image):
|
35 |
-
# input labels for clip model
|
36 |
-
label = ['food ', 'Not food']
|
37 |
-
|
38 |
-
# CLIP Model for classification
|
39 |
-
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
40 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
41 |
-
|
42 |
-
image = Image.open(requests.get(uploaded_file, stream=True).raw)
|
43 |
-
inputs = processor(text=label, images=image, return_tensors="pt", padding=True)
|
44 |
-
return inputs
|
45 |
-
|
46 |
|
47 |
def main():
|
48 |
st.set_page_config(
|
@@ -76,59 +62,71 @@ def main():
|
|
76 |
|
77 |
if predict:
|
78 |
if uploaded_file is not None:
|
79 |
-
with st.spinner('
|
80 |
-
|
81 |
-
|
82 |
-
if selected_location == 'India':
|
83 |
-
pred_model = model_V1
|
84 |
-
pred_rescale = True
|
85 |
-
if selected_location == 'Outside_India':
|
86 |
-
pred_model = model_V2
|
87 |
-
pred_rescale =True
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
food, source_code, recipe_data = model_prediction(pred_model, uploaded_img, pred_rescale,selected_location)
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
130 |
|
131 |
|
|
|
132 |
else:
|
133 |
st.warning('Please Upload Image')
|
134 |
|
|
|
3 |
import time
|
4 |
import PIL
|
5 |
import PIL.Image as Image
|
|
|
|
|
|
|
6 |
from utils import make_pred_outside_india
|
7 |
from utils import getmodel_outside_india
|
8 |
from utils import getmodel_india
|
9 |
from utils import load_prepare_img
|
10 |
+
from utils import food_nofood_pred
|
11 |
import sys
|
12 |
from RecipeData import fetchRecipeData
|
13 |
|
|
|
24 |
prediction = make_pred_outside_india(input_img, model, device, selected_location)
|
25 |
elif(selected_location=='India'):
|
26 |
model = getmodel_india(model_path)
|
27 |
+
|
28 |
prediction = make_pred_outside_india(input_img, model, device, selected_location)
|
29 |
+
print(prediction)
|
30 |
sorceCode, recipe_data = fetchRecipeData(prediction)
|
31 |
+
return prediction, sorceCode, recipe_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def main():
|
34 |
st.set_page_config(
|
|
|
62 |
|
63 |
if predict:
|
64 |
if uploaded_file is not None:
|
65 |
+
with st.spinner('getting image type'):
|
66 |
+
img_type=food_nofood_pred(uploaded_img)
|
67 |
+
print(img_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
if(img_type=='food'):
|
|
|
70 |
|
71 |
+
with st.spinner('Please Wait π©βπ³'):
|
72 |
+
|
73 |
+
# setting model and rescalling
|
74 |
+
if selected_location == 'India':
|
75 |
+
pred_model = model_V1
|
76 |
+
pred_rescale = True
|
77 |
+
if selected_location == 'Outside_India':
|
78 |
+
pred_model = model_V2
|
79 |
+
pred_rescale =True
|
80 |
+
|
81 |
+
|
82 |
+
# makeing prediction and fetching food recipe form api
|
83 |
+
food, source_code, recipe_data = model_prediction(pred_model, uploaded_img, pred_rescale,selected_location)
|
84 |
+
|
85 |
+
# asssigning caleoric breakdown data
|
86 |
+
percent_Protein = recipe_data['percentProtein']
|
87 |
+
percent_fat = recipe_data['percentFat']
|
88 |
+
percent_carbs = recipe_data['percentCarbs']
|
89 |
+
|
90 |
+
# food name message
|
91 |
+
col1.success(f"It's an {food}")
|
92 |
+
|
93 |
+
if source_code == 200:
|
94 |
+
# desplay food recipe
|
95 |
+
st.header(recipe_data['title']+" Recipe")
|
96 |
+
|
97 |
+
col3, col4 = st.columns(2)
|
98 |
+
|
99 |
+
with col3:
|
100 |
+
# Ingridents of recipie
|
101 |
+
st.subheader('Ingredients')
|
102 |
+
# st.info(recipe_data['ingridents'])
|
103 |
+
for i in recipe_data['ingridents']:
|
104 |
+
st.info(f"{i}")
|
105 |
+
# Inctuction for recipe
|
106 |
+
with col4:
|
107 |
+
st.subheader('Instructions')
|
108 |
+
st.info(recipe_data['instructions'])
|
109 |
+
# st.subheader('Caloric Breakdown')
|
110 |
+
'''
|
111 |
+
## Caloric Breakdown
|
112 |
+
'''
|
113 |
+
st.success(f'''
|
114 |
+
* Protien: {percent_Protein}%
|
115 |
+
* Fat: {percent_fat}%
|
116 |
+
* Carbohydrates: {percent_carbs}%
|
117 |
+
''')
|
118 |
+
|
119 |
+
|
120 |
+
else:
|
121 |
+
st.error('Something went wrong please try again :(')
|
122 |
|
123 |
+
elif(img_type=='not food'):
|
124 |
+
|
125 |
+
# Ingridents of recipie
|
126 |
+
st.warning('This is not food image Please try again!!')
|
127 |
|
128 |
|
129 |
+
|
130 |
else:
|
131 |
st.warning('Please Upload Image')
|
132 |
|