Spaces:
Running
Running
Create prompt_modals.py
Browse files- prompt_modals.py +50 -0
prompt_modals.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
2 |
+
import re
|
3 |
+
|
4 |
+
api_key = os.getenv('ImagiGen_HF_secret')
|
5 |
+
|
6 |
+
|
7 |
+
def clean_generated_text(text):
|
8 |
+
# Remove asterisks (e.g., **text** or *text*)
|
9 |
+
text = re.sub(r"\*+", "", text)
|
10 |
+
|
11 |
+
# Remove special characters (except common punctuation and alphanumeric)
|
12 |
+
text = re.sub(r'[^a-zA-Z0-9 .,!?\'"-]', "", text)
|
13 |
+
|
14 |
+
# Normalize multiple spaces into a single space
|
15 |
+
text = re.sub(r"\s+", " ", text).strip()
|
16 |
+
return text
|
17 |
+
|
18 |
+
|
19 |
+
def generate_prompt_response(api_key, model_name, user_message, max_tokens=1000):
|
20 |
+
client = InferenceClient(api_key=api_key)
|
21 |
+
messages = [{"role": "user", "content": user_message}]
|
22 |
+
|
23 |
+
# Generate the completion response
|
24 |
+
stream = client.chat.completions.create(
|
25 |
+
model=model_name, messages=messages, max_tokens=max_tokens, stream=True
|
26 |
+
)
|
27 |
+
|
28 |
+
# Collect the response
|
29 |
+
response = ""
|
30 |
+
for chunk in stream:
|
31 |
+
response += chunk.choices[0].delta.content
|
32 |
+
return clean_generated_text(response)
|
33 |
+
|
34 |
+
|
35 |
+
def Qwen_72b(user_input):
|
36 |
+
model_name = "Qwen/Qwen2.5-72B-Instruct"
|
37 |
+
response = generate_prompt_response(api_key, model_name, user_message=user_input)
|
38 |
+
return clean_generated_text(response)
|
39 |
+
|
40 |
+
|
41 |
+
def Mixtral(user_input):
|
42 |
+
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
43 |
+
response = generate_prompt_response(api_key, model_name, user_message=user_input)
|
44 |
+
return clean_generated_text(response)
|
45 |
+
|
46 |
+
|
47 |
+
def microsoft_phi(user_input):
|
48 |
+
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
49 |
+
response = generate_prompt_response(api_key, model_name, user_message=user_input)
|
50 |
+
return clean_generated_text(response)
|