File size: 1,188 Bytes
cff69c1
 
 
 
 
 
 
3aee5d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
import transformers
import torch 
import re 
import gradio as gr
from PIL import Image
from transformers import pipeline
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel 
import os
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

device='cpu'

model_id = "nttdataspain/vit-gpt2-stablediffusion2-lora"
model = VisionEncoderDecoderModel.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
feature_extractor = ViTFeatureExtractor.from_pretrained(model_id)

def predict(image):
    img = image.convert('RGB')
    model.eval()
    pixel_values = feature_extractor(images=[img], return_tensors="pt").pixel_values
    with torch.no_grad():
        output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences

    preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
    preds = [pred.strip() for pred in preds]
    return preds[0]
# def get_image(img):
#   image=pipe(img)
#   return image[0]['generated_text']
image=gr.Interface(predict,title='Image to text',inputs= gr.Image(label="Upload any Image", type = 'pil'),outputs='text').launch(share=True)