Spaces:
Sleeping
Sleeping
from uuid import uuid4 | |
import gradio as gr | |
from laia.scripts.htr.decode_ctc import run as decode | |
from laia.common.arguments import CommonArgs, DataArgs, TrainerArgs, DecodeArgs | |
import sys | |
from tempfile import NamedTemporaryFile, mkdtemp | |
from pathlib import Path | |
from contextlib import redirect_stdout | |
import re | |
from huggingface_hub import snapshot_download | |
images = Path(mkdtemp()) | |
IMAGE_ID_PATTERN = r"(?P<image_id>[-a-z0-9]{36})" | |
CONFIDENCE_PATTERN = r"(?P<confidence>[0-9.]+)" # For line | |
TEXT_PATTERN = r"\s*(?P<text>.*)\s*" | |
LINE_PREDICTION = re.compile(rf"{IMAGE_ID_PATTERN} {CONFIDENCE_PATTERN} {TEXT_PATTERN}") | |
models_name = ["Teklia/pylaia-rimes", "Teklia/pylaia-belfort", "Teklia/pylaia-casia-hwdb2", "Teklia/pylaia-esposalles", "Teklia/pylaia-himanis", "Teklia/pylaia-home-alcar", "Teklia/pylaia-iam", "Teklia/pylaia-newseye-austrian", "Teklia/pylaia-norhand-v1", "Teklia/pylaia-norhand-v2", "Teklia/pylaia-norhand-v3", "Teklia/pylaia-popp", "Teklia/pylaia-rimes", "Teklia/pylaia-PELLET-CasimirMarius"] | |
] | |
MODELS = {} | |
DEFAULT_HEIGHT = 128 | |
def get_width(image, height=DEFAULT_HEIGHT): | |
aspect_ratio = image.width / image.height | |
return height * aspect_ratio | |
def load_model(model_name): | |
if model_name not in MODELS: | |
MODELS[model_name] = Path(snapshot_download(model_name)) | |
return MODELS[model_name] | |
def predict(model_name, input_img): | |
model_dir = load_model(model_name) | |
temperature = 2.0 | |
batch_size = 1 | |
weights_path = model_dir / "weights.ckpt" | |
syms_path = model_dir / "syms.txt" | |
language_model_params = {"language_model_weight": 1.0} | |
use_language_model = (model_dir / "tokens.txt").exists() | |
if use_language_model: | |
language_model_params.update( | |
{ | |
"language_model_path": str(model_dir / "language_model.arpa.gz"), | |
"lexicon_path": str(model_dir / "lexicon.txt"), | |
"tokens_path": str(model_dir / "tokens.txt"), | |
} | |
) | |
common_args = CommonArgs( | |
checkpoint=str(weights_path.relative_to(model_dir)), | |
train_path=str(model_dir), | |
experiment_dirname="", | |
) | |
data_args = DataArgs(batch_size=batch_size, color_mode="L") | |
trainer_args = TrainerArgs( | |
# Disable progress bar else it messes with frontend display | |
progress_bar_refresh_rate=0 | |
) | |
decode_args = DecodeArgs( | |
include_img_ids=True, | |
join_string="", | |
convert_spaces=True, | |
print_line_confidence_scores=True, | |
print_word_confidence_scores=False, | |
temperature=temperature, | |
use_language_model=use_language_model, | |
**language_model_params, | |
) | |
with NamedTemporaryFile() as pred_stdout, NamedTemporaryFile() as img_list: | |
image_id = uuid4() | |
# Resize image to 128 if bigger/smaller | |
input_img = input_img.resize((int(get_width(input_img)), DEFAULT_HEIGHT)) | |
input_img.save(str(images / f"{image_id}.jpg")) | |
# Export image list | |
Path(img_list.name).write_text("\n".join([str(image_id)])) | |
# Capture stdout as that's where PyLaia outputs predictions | |
with redirect_stdout(open(pred_stdout.name, mode="w")): | |
decode( | |
syms=str(syms_path), | |
img_list=img_list.name, | |
img_dirs=[str(images)], | |
common=common_args, | |
data=data_args, | |
trainer=trainer_args, | |
decode=decode_args, | |
num_workers=1, | |
) | |
# Flush stdout to avoid output buffering | |
sys.stdout.flush() | |
predictions = Path(pred_stdout.name).read_text().strip().splitlines() | |
assert len(predictions) == 1 | |
_, score, text = LINE_PREDICTION.match(predictions[0]).groups() | |
return input_img, {"text": text, "score": score} | |
gradio_app = gr.Interface( | |
predict, | |
inputs=[ | |
gr.Dropdown(models_name, value=models_name[0], label="Models"), | |
gr.Image( | |
label="Upload an image of a line", | |
sources=["upload", "clipboard"], | |
type="pil", | |
height=DEFAULT_HEIGHT, | |
width=2000, | |
image_mode="L", | |
), | |
], | |
outputs=[ | |
gr.Image(label="Processed Image"), | |
gr.JSON(label="Decoded text"), | |
], | |
examples=[ | |
["Teklia/pylaia-rimes", str(filename)] | |
for filename in Path("examples").iterdir() | |
], | |
title="Decode the transcription of an image using a PyLaia model", | |
cache_examples=True, | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() | |