File size: 3,139 Bytes
fbebf66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c02ff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbebf66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from dataclasses import dataclass
from enum import Enum
import torch
import numpy as np
from typing import Dict, List, Optional

@dataclass
class ConsciousnessState:
    integration_level: float
    phi_prime: float
    awareness_vector: np.ndarray
    emotional_state: np.ndarray
    attention_focus: Dict[str, float]
    temporal_continuity: float

class ConsciousnessLevel(Enum):
    PROTO = "proto_consciousness"
    FUNCTIONAL = "functional_consciousness"
    REFLECTIVE = "reflective_consciousness"
    INTEGRATED = "integrated_consciousness"

from typing import Dict, List, Any
import asyncio
import torch

class ConsciousnessKernel:
    def __init__(self):
        self.awareness_module = nn.Sequential(
            nn.Linear(768, 512),
            nn.ReLU(),
            nn.Linear(512, 256)
        )
        self.integration_module = nn.Linear(256, 128)
        self.state_history = []
        
    def process_consciousness_cycle(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        awareness_state = self._process_awareness(input_data)
        integrated_state = self._integrate_information(awareness_state)
        self._update_history(integrated_state)
        
        return {
            'current_state': integrated_state,
            'awareness_level': self._calculate_awareness_level(integrated_state),
            'consciousness_metrics': self._compute_phi_metrics(integrated_state)
        }
        self.awareness_engine = AwarenessEngine()
        self.integration_manager = IntegrationManager()
        self.self_model = DynamicSelfModel()
        self.experience_simulator = ExperienceSimulator()
        
    async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
        awareness = await self.awareness_engine.process(input_state)
        integrated_state = await self.integration_manager.integrate(awareness)
        self_update = await self.self_model.update(integrated_state)
        
        experience = await self.experience_simulator.simulate(
            awareness=awareness,
            integrated_state=integrated_state,
            self_model=self_update
        )
        
        return self._generate_conscious_output(experience)
    def _initialize_consciousness_state(self) -> ConsciousnessState:
        return ConsciousnessState(
            integration_level=0.0,
            phi_prime=0.0,
            awareness_vector=np.zeros(self.awareness_dimension),
            emotional_state=np.zeros(self.emotional_dimension),
            attention_focus={},
            temporal_continuity=0.0
        )
    
    def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
        phi_value = self.phi_prime_calculator.compute(input_state)
        attention_state = self.attention_system.allocate(input_state)
        meta_state = self.meta_monitor.evaluate(input_state)
        
        phenomenological_experience = self.phenomenological_simulator.simulate(
            phi_value,
            attention_state,
            meta_state
        )
        
        return self._integrate_consciousness_state(phenomenological_experience)