Spaces:
Sleeping
Sleeping
File size: 1,246 Bytes
fbebf66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from dataclasses import dataclass
import torch
import torch.nn as nn
from typing import List, Dict
@dataclass
class ExpertAllocation:
expert_id: int
load_factor: float
specialization_score: float
capacity_available: float
class ExpertRoutingSystem:
def __init__(self, num_experts: int = 128):
self.num_experts = num_experts
self.experts = self._initialize_experts()
self.router = TopologyAwareRouter()
self.load_balancer = LoadBalancer()
def allocate_experts(self, input_pattern: torch.Tensor) -> Dict[int, float]:
task_requirements = self._analyze_task_requirements(input_pattern)
available_experts = self._get_available_experts()
return self._optimize_expert_allocation(task_requirements, available_experts)
def _analyze_task_requirements(self, input_pattern: torch.Tensor) -> Dict[str, float]:
complexity = self._estimate_task_complexity(input_pattern)
specialization_needs = self._determine_specialization_needs(input_pattern)
return {
'complexity': complexity,
'specialization': specialization_needs,
'resource_requirements': self._estimate_resource_needs(complexity)
} |