File size: 837 Bytes
fbebf66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import numpy as np
from typing import Dict, List, Any
import torch
import torch.nn as nn

class PhiPrimeCalculator:
    def __init__(self, num_dimensions: int = 128):
        self.num_dimensions = num_dimensions
        self.integration_threshold = 0.7
        self.information_metrics = InformationMetrics()
        self.integration_analyzer = IntegrationAnalyzer()
        
    def compute(self, system_state: Dict[str, Any]) -> float:
        information_content = self.information_metrics.calculate(system_state)
        integration_level = self.integration_analyzer.analyze(system_state)
        
        return self._compute_phi_prime(information_content, integration_level)
        
    def _compute_phi_prime(self, information: float, integration: float) -> float:
        return (information * integration) / self.num_dimensions