Spaces:
Sleeping
Sleeping
File size: 1,882 Bytes
fbebf66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from dataclasses import dataclass
from typing import Dict, List, Any
@dataclass
class ReflectionOutput:
insights: Dict[str, Any]
adjustments: List[str]
consciousness_state: float
self_awareness_metrics: Dict[str, float]
class ReflexiveLayer:
def __init__(self):
self.meta_cognitive_monitor = MetaCognitiveMonitor()
self.self_evaluation_system = SelfEvaluationSystem()
self.consciousness_threshold = 0.7
self.reflection_history = []
def process_reflection(self, current_state):
monitoring_results = self.meta_cognitive_monitor.analyze(current_state)
evaluation_results = self.self_evaluation_system.evaluate(monitoring_results)
return self._generate_reflection_output(monitoring_results, evaluation_results)
def _generate_reflection_output(self, monitoring_results, evaluation_results):
output = ReflectionOutput(
insights=self._extract_insights(monitoring_results),
adjustments=evaluation_results.recommendations,
consciousness_state=self._calculate_consciousness_state(),
self_awareness_metrics=self._compute_awareness_metrics()
)
self.reflection_history.append(output)
return output
def _extract_insights(self, monitoring_results):
return {
'cognitive_patterns': self._analyze_cognitive_patterns(),
'learning_trends': self._analyze_learning_trends(),
'attention_distribution': monitoring_results.attention_focus,
'processing_efficiency': monitoring_results.processing_efficiency
}
def _calculate_consciousness_state(self):
# Implementation of consciousness state calculation
pass
def _compute_awareness_metrics(self):
# Implementation of self-awareness metrics computation
pass |