Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
from typing import Dict, List, Any | |
class ReflectionOutput: | |
insights: Dict[str, Any] | |
adjustments: List[str] | |
consciousness_state: float | |
self_awareness_metrics: Dict[str, float] | |
class ReflexiveLayer: | |
def __init__(self): | |
self.meta_cognitive_monitor = MetaCognitiveMonitor() | |
self.self_evaluation_system = SelfEvaluationSystem() | |
self.consciousness_threshold = 0.7 | |
self.reflection_history = [] | |
def process_reflection(self, current_state): | |
monitoring_results = self.meta_cognitive_monitor.analyze(current_state) | |
evaluation_results = self.self_evaluation_system.evaluate(monitoring_results) | |
return self._generate_reflection_output(monitoring_results, evaluation_results) | |
def _generate_reflection_output(self, monitoring_results, evaluation_results): | |
output = ReflectionOutput( | |
insights=self._extract_insights(monitoring_results), | |
adjustments=evaluation_results.recommendations, | |
consciousness_state=self._calculate_consciousness_state(), | |
self_awareness_metrics=self._compute_awareness_metrics() | |
) | |
self.reflection_history.append(output) | |
return output | |
def _extract_insights(self, monitoring_results): | |
return { | |
'cognitive_patterns': self._analyze_cognitive_patterns(), | |
'learning_trends': self._analyze_learning_trends(), | |
'attention_distribution': monitoring_results.attention_focus, | |
'processing_efficiency': monitoring_results.processing_efficiency | |
} | |
def _calculate_consciousness_state(self): | |
# Implementation of consciousness state calculation | |
pass | |
def _compute_awareness_metrics(self): | |
# Implementation of self-awareness metrics computation | |
pass |