Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
from typing import Dict, List, Optional | |
import numpy as np | |
import torch | |
class NPUState: | |
load_level: float | |
active_cores: int | |
memory_usage: Dict[str, float] | |
temperature: float | |
processing_efficiency: float | |
class NeuralProcessingUnit: | |
def __init__(self, num_cores: int = 128): | |
self.num_cores = num_cores | |
self.state = NPUState( | |
load_level=0.0, | |
active_cores=0, | |
memory_usage={}, | |
temperature=0.0, | |
processing_efficiency=1.0 | |
) | |
self.sparse_activation = SparseActivationManager() | |
self.expert_router = ExpertRoutingSystem() | |
async def process_neural_task(self, input_data: torch.Tensor) -> torch.Tensor: | |
activation_pattern = self.sparse_activation.compute_pattern(input_data) | |
expert_allocation = self.expert_router.allocate_experts(activation_pattern) | |
return await self._execute_neural_computation(input_data, expert_allocation) |